Answer
Verified
485.1k+ views
Hint: We will make a figure of a rectangle with a circle made on the diagonal of it. We will put the values of the sides given in the question in the figure and solve it further. We will use the basic equation of a circle i.e. ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$ where r is the radius of the circle.
Complete Step-by-Step solution:
Using the sides of the rectangle which are given in the question, we will find out the coordinates of A, B, C, and D.
The coordinates are-
$
A = \left( {5, - 3} \right) \\
\\
B = \left( {5, - 1} \right) \\
\\
C = \left( { - 2, - 1} \right) \\
\\
D = \left( { - 2,3} \right) \\
$
Now, let O be the center of the circle and the rectangle. Let’s assume its coordinates to be $\left( {h,k} \right)$.
In order to find the value of $\left( {h,k} \right)$, we must find out the average of the diagonal BD.
So,
The average of the diagonal BD is-
$
h = \dfrac{{ - 2 + 5}}{2} = \dfrac{3}{2} \\
\\
k = \dfrac{{3 - 1}}{2} = \dfrac{2}{2} = 1 \\
$
The coordinates of the center O of the circle and rectangle are $\left( {\dfrac{3}{2},1} \right)$.
Now, OD is the radius of the circle. In order to find its value, we will apply the formula ${r^2} = {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2}$.
Putting the value of h and k as well as the value of coordinates of D, we have-
$
OD = {r^2} = {\left( { - 2 - \dfrac{3}{2}} \right)^2} + {\left( {3 - 1} \right)^2} \\
\\
\Rightarrow {\left( {\dfrac{{ - 7}}{2}} \right)^2} + {\left( 2 \right)^2} \\
\\
\Rightarrow \dfrac{{49}}{4} + 4 = \dfrac{{65}}{4} \\
$
Thus, the value of ${r^2}$ is $\dfrac{{65}}{4}$.
Now, applying the formula of the equation of the circle i.e. ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$ and putting the values of the coordinates of center O, we have-
${\left( {x - \dfrac{3}{2}} \right)^2} + {\left( {y - 1} \right)^2} = \dfrac{{65}}{4}$
Hence, the above equation is the desired equation of the circle as asked by the question.
Note: In such questions, always look for the value of the coordinates of the center first and then the value of radius. Doing this much solves half your problem and only putting in the values into the formula is left.
Complete Step-by-Step solution:
Using the sides of the rectangle which are given in the question, we will find out the coordinates of A, B, C, and D.
The coordinates are-
$
A = \left( {5, - 3} \right) \\
\\
B = \left( {5, - 1} \right) \\
\\
C = \left( { - 2, - 1} \right) \\
\\
D = \left( { - 2,3} \right) \\
$
Now, let O be the center of the circle and the rectangle. Let’s assume its coordinates to be $\left( {h,k} \right)$.
In order to find the value of $\left( {h,k} \right)$, we must find out the average of the diagonal BD.
So,
The average of the diagonal BD is-
$
h = \dfrac{{ - 2 + 5}}{2} = \dfrac{3}{2} \\
\\
k = \dfrac{{3 - 1}}{2} = \dfrac{2}{2} = 1 \\
$
The coordinates of the center O of the circle and rectangle are $\left( {\dfrac{3}{2},1} \right)$.
Now, OD is the radius of the circle. In order to find its value, we will apply the formula ${r^2} = {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2}$.
Putting the value of h and k as well as the value of coordinates of D, we have-
$
OD = {r^2} = {\left( { - 2 - \dfrac{3}{2}} \right)^2} + {\left( {3 - 1} \right)^2} \\
\\
\Rightarrow {\left( {\dfrac{{ - 7}}{2}} \right)^2} + {\left( 2 \right)^2} \\
\\
\Rightarrow \dfrac{{49}}{4} + 4 = \dfrac{{65}}{4} \\
$
Thus, the value of ${r^2}$ is $\dfrac{{65}}{4}$.
Now, applying the formula of the equation of the circle i.e. ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$ and putting the values of the coordinates of center O, we have-
${\left( {x - \dfrac{3}{2}} \right)^2} + {\left( {y - 1} \right)^2} = \dfrac{{65}}{4}$
Hence, the above equation is the desired equation of the circle as asked by the question.
Note: In such questions, always look for the value of the coordinates of the center first and then the value of radius. Doing this much solves half your problem and only putting in the values into the formula is left.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE