Answer
Verified
398.4k+ views
Hint: Since two coordinate points are given and we want to find equation of straight line so we can directly use two point formula to find the equation of straight line and the formula is given by
\[\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Complete step-by-step answer:
We know that equation of line through two points \[({x_1},{y_1})\] and \[({x_2},{y_2})\]is
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})\]
Since the given equation of the line passes through the points \[( - 1,1)\] and \[(2, - 4)\].
Here, let us take
\[{x_1} = - 1,{y_1} = 1\]
\[{x_2} = 2,{y_2} = - 4\]
Substituting the values in the formula
\[(y - 1) = \dfrac{{ - 4 - 1}}{{2 - ( - 1)}}(x - ( - 1))\]
\[(y - 1) = \dfrac{{ - 5}}{{2 + 1}}(x + 1)\]
\[(y - 1) = \dfrac{{ - 5}}{3}(x + 1)\]
(cross multiply with 3)
\[3(y - 1) = - 5(x + 1)\]
after simplification we get
\[3y - 3 = - 5x - 5\]
rearranging the terms we get-
\[5x + 3y + 2 = 0\]
Hence, the required equation is \[5x + 3y + 2 = 0\]
So, the correct answer is “ \[5x + 3y + 2 = 0\]”.
Note: we can solve this by using slope intercept form given by \[y = mx + c\], where m is the slope of the given line and c is the y-intercept
First find the slope of the line using the formula
\[m = \]\[\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
let us take
\[{x_1} = - 1,{y_1} = 1\]
\[{x_2} = 2,{y_2} = - 4\]
Substituting the values in the formula we get
\[m = \] \[\dfrac{{ - 4 - 1}}{{2 - ( - 1)}}\]
now take any one given coordinate point as x and y that is \[x = - 1,y = 1\] now substituting the values in the above equation we get
\[ \Rightarrow 1 = \dfrac{{ - 5}}{3}( - 1) + c\]
after simplification we get
\[ \Rightarrow 1 = \dfrac{5}{3} + c\]
(shift \[\dfrac{5}{3}\] to left hand side we get)
\[ \Rightarrow 1 - \dfrac{5}{3} = c\]
(taking lcm ,on simplifying we get)
\[ \Rightarrow \dfrac{{ - 2}}{3} = c\]
Now substitute c in equation 1 we get
\[ \Rightarrow y = \dfrac{{ - 5}}{3}x + \dfrac{{ - 2}}{3}\]
\[ \Rightarrow y = \dfrac{{ - 5x - 2}}{3}\]
\[ \Rightarrow 3y = - 5x - 2\] (shifting the terms and rearrange)
\[ \Rightarrow 5x + 3y + 2 = 0\]
Hence, the required equation is \[5x + 3y + 2 = 0\]
And it is same as solution obtained above
\[\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Complete step-by-step answer:
We know that equation of line through two points \[({x_1},{y_1})\] and \[({x_2},{y_2})\]is
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})\]
Since the given equation of the line passes through the points \[( - 1,1)\] and \[(2, - 4)\].
Here, let us take
\[{x_1} = - 1,{y_1} = 1\]
\[{x_2} = 2,{y_2} = - 4\]
Substituting the values in the formula
\[(y - 1) = \dfrac{{ - 4 - 1}}{{2 - ( - 1)}}(x - ( - 1))\]
\[(y - 1) = \dfrac{{ - 5}}{{2 + 1}}(x + 1)\]
\[(y - 1) = \dfrac{{ - 5}}{3}(x + 1)\]
(cross multiply with 3)
\[3(y - 1) = - 5(x + 1)\]
after simplification we get
\[3y - 3 = - 5x - 5\]
rearranging the terms we get-
\[5x + 3y + 2 = 0\]
Hence, the required equation is \[5x + 3y + 2 = 0\]
So, the correct answer is “ \[5x + 3y + 2 = 0\]”.
Note: we can solve this by using slope intercept form given by \[y = mx + c\], where m is the slope of the given line and c is the y-intercept
First find the slope of the line using the formula
\[m = \]\[\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
let us take
\[{x_1} = - 1,{y_1} = 1\]
\[{x_2} = 2,{y_2} = - 4\]
Substituting the values in the formula we get
\[m = \] \[\dfrac{{ - 4 - 1}}{{2 - ( - 1)}}\]
now take any one given coordinate point as x and y that is \[x = - 1,y = 1\] now substituting the values in the above equation we get
\[ \Rightarrow 1 = \dfrac{{ - 5}}{3}( - 1) + c\]
after simplification we get
\[ \Rightarrow 1 = \dfrac{5}{3} + c\]
(shift \[\dfrac{5}{3}\] to left hand side we get)
\[ \Rightarrow 1 - \dfrac{5}{3} = c\]
(taking lcm ,on simplifying we get)
\[ \Rightarrow \dfrac{{ - 2}}{3} = c\]
Now substitute c in equation 1 we get
\[ \Rightarrow y = \dfrac{{ - 5}}{3}x + \dfrac{{ - 2}}{3}\]
\[ \Rightarrow y = \dfrac{{ - 5x - 2}}{3}\]
\[ \Rightarrow 3y = - 5x - 2\] (shifting the terms and rearrange)
\[ \Rightarrow 5x + 3y + 2 = 0\]
Hence, the required equation is \[5x + 3y + 2 = 0\]
And it is same as solution obtained above
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE