Answer
Verified
500.7k+ views
Hint : Since slope of the line is given assume the equation of tangent in slope form and proceed.
The given hyperbola can also be written as $\dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{1} = 1.$
On comparing it with standard equation of hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1.$
We come to know ${a^2} = 4,{b^2} = 1$
We also know slope of the given line $x + 2y = 0{\text{ }}$is $ - \dfrac{1}{2}$
(i) When the tangent is parallel to the given line then the
slope of the tangent will be $m = {\text{ }}\dfrac{{ - 1}}{2}$
Then we will apply the condition of tangency in hyperbola which is ${c^2} = {a^2}{m^2} - {b^2}$
On putting the values of $a,b,m$which has been obtained above we get,
${c^2} = 4{\left( {\dfrac{{ - 1}}{2}} \right)^2} - {1^2}$
${\text{ }}c = 1 - 1 = 0$
Therefore the equation will be in the form $y = mx + c$
Then,
$
y = - \dfrac{1}{2}x \\
x + 2y = 0 \\
$
Above equation is the required equation of tangent.
(ii) When the tangent is perpendicular to the given line $x + 2y = 0$
Then the slope $m$ of the tangent will be
$
m{\text{ x}}\;\left( {\dfrac{{ - 1}}{2}} \right) = - 1 \\
m = 2 \\
$
Then again applying the condition of tangency of hyperbola we get,
${c^2} = {a^2}{m^2} - {b^2}$
Then putting the value of $a,b,m$ we get,
$c = \pm \sqrt {15} $
Therefore the required equation will now be in the form
$y = mx + c$
On putting the values of $m,c$ we get the equation as
$y = 2x \pm \sqrt {15} .$
Note :- In this question we have just applied the condition of tangency of hyperbola and with the help of given data in question we found slope and the values of a & b then we have applied the condition of parallel and perpendicular .
The given hyperbola can also be written as $\dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{1} = 1.$
On comparing it with standard equation of hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1.$
We come to know ${a^2} = 4,{b^2} = 1$
We also know slope of the given line $x + 2y = 0{\text{ }}$is $ - \dfrac{1}{2}$
(i) When the tangent is parallel to the given line then the
slope of the tangent will be $m = {\text{ }}\dfrac{{ - 1}}{2}$
Then we will apply the condition of tangency in hyperbola which is ${c^2} = {a^2}{m^2} - {b^2}$
On putting the values of $a,b,m$which has been obtained above we get,
${c^2} = 4{\left( {\dfrac{{ - 1}}{2}} \right)^2} - {1^2}$
${\text{ }}c = 1 - 1 = 0$
Therefore the equation will be in the form $y = mx + c$
Then,
$
y = - \dfrac{1}{2}x \\
x + 2y = 0 \\
$
Above equation is the required equation of tangent.
(ii) When the tangent is perpendicular to the given line $x + 2y = 0$
Then the slope $m$ of the tangent will be
$
m{\text{ x}}\;\left( {\dfrac{{ - 1}}{2}} \right) = - 1 \\
m = 2 \\
$
Then again applying the condition of tangency of hyperbola we get,
${c^2} = {a^2}{m^2} - {b^2}$
Then putting the value of $a,b,m$ we get,
$c = \pm \sqrt {15} $
Therefore the required equation will now be in the form
$y = mx + c$
On putting the values of $m,c$ we get the equation as
$y = 2x \pm \sqrt {15} .$
Note :- In this question we have just applied the condition of tangency of hyperbola and with the help of given data in question we found slope and the values of a & b then we have applied the condition of parallel and perpendicular .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE