Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the equation of the circle circumscribing the triangle formed by the lines x + y = 6, 2x + y = 4 and x + 2y = 5.

Answer
VerifiedVerified
431.6k+ views
1 likes
like imagedislike image
Hint: We will find the vertices of the triangle formed by the given lines and then we will find the center and radius of the circle using the distance formula. Finally, we will find the required equation of the circle from the obtained data.
Distance formula, d=(x2x1)2+(y2y1)2

Complete step-by-step answer:
Given that x + y = 6, 2x + y = 4 and x + 2y = 5 are the equation of the sides of a triangle. We have to find the equation of a circle circumscribing the triangle formed by the lines respectively.
seo images

Let us assume that
x+y=6.....(i)
2x+y=4.....(ii)
x+2y=5....(iii)
Now, we will try to find out the vertices of ΔABC as the vertices of the ΔABC lie on the circle.
For finding the point A, we will solve the equation (i) and (iii) respectively, we get
x+y=6x+2y=5 0+(y)=1
y=1
By putting the value of y in the equation (i), we get
x+(1)=6
x=7
Thus, the point A is (7, – 1).
Similarly, for point B, we will solve the equation (i) and (ii) respectively, we get
x+y=62x+y=4 x+0=2
x=2
On putting the value of x = – 2 in the equation (i), we get
2+y=6
y=6+2
y=8
Thus, the point B is (– 2, 8).
Similarly, for point C, we will solve the equation (iii) and (ii) respectively, we get
2x+y=4x+2y=5
Multiplying equation (ii) with 2 on both sides, we get
4x+2y=8x+2y=53x+0=3
x=33
x=1
Putting the value of x = 1 in the equation (iii), we get
x+2y=5
1+2y=5
2y=4
y=2
Thus, the point C is (– 1, 2).
Now, we have three points A (7, – 1), B (– 2, 8) and C (1, 2) which are lying on the circle. It means that the point must be satisfying the general equation of the circle. Now, we know that the general equation of the circle is:
(xh)2+(yk)2=(r)2
Here, (h, k) are the coordinates of the circle and r is the radius of the circle. We know that radii of a circle are of equal length. Thus, from this we have
OA2=OB2=OC2
These are the radii of the same circle.
Also, we know that the distance formula of two points (x1,y1) and (x2,y2) is
d=(x2x1)2+(y2y1)2
Applying distance formula between OA and OC, we get
OA=OC
(h7)2+(k(1))2=(h1)2+(k2)2
h2+(7)22(7)(h)+k2+12+2(k)(1)=h2+122(h)(1)+k2+222(2)(k)
h2+4914h+k2+1+2k=h2+12h+k2+44k
On squaring both sides, we get
h2+k214h+2k+50=h2+k22h4k+5
Canceling the like terms from both the sides, we get
14h+2k+50=2h4k+5
14h+2h+2k+4k=550
12h+6k=45
12h6k=45....(iv)
Similarly, for OB = OC,
(h(2))2+(k8)2=(h1)2+(k2)2
h2+(2)22(2)(h)+k2+822(k)(8)=h2+122(h)(1)+k2+222(2)(k)
h2+4+4h+k2+6416k=h2+12h+k2+44k
h2+k2+4h16k+68=h2+k22h4k+5
On squaring both sides, we get
h2+k2+4h16k+68=h2+k22h4k+5
Canceling the similar terms from both the sides, we get
4h16k+68=2h4k+5
4h+2h16k+4k=568
6h12k=63.....(v)
And for OA = OC
(h7)2+(k(1))2=(h1)2+(k2)2
h2+(7)22(7)(h)+k2+12+2(k)(1)=h2+122(h)(1)+k2+222(2)(k)
h2+4914h+k2+1+2k=h2+122h(1)+k2+222(2)(k)
On squaring both sides, we get
h2+k214h+2k+50=h2+k22h4k+5
14k+2k+50=2h4k+5
12h+6k=45
12h65=45....(vi)
Now, solving the equations (v) and (vi), we get,
+6h12k=6312h6k=45  
Multiplying the equation (v) with 2, we get,
12h24k=12612h6k=45 - + - 018k=171 
k=17118
k=192
Also, putting the value of k=192 in the equation (vi), we get
12h6×(192)=45
12h3×19=45
12h57=45
12h=45+57
12h=102
h=10212
h=172
So, now we have the coordinates of the center (h,k)=(172,192)
Also, we know that OC is the radius of the circle, so from a distance formula, we will calculate the radius of the given circle. We know that the distance formula for (x1,y1) and (x2,y2) is
OC=(hx)2+(ky)2
Here, (x,y)=(1,2)
Coordinates of point C
OC=(1721)2+(1922)2
OC=(15)24+(15)24
OC=4504
Now, we have all the required values available to form an equation of the circle. We know that the general equation of the circle is:
(xh)2+(yk)2=(r)2
Putting the values of (h, k) and r in the general equation, we get
(x172)2+(y192)2=(4504)2
x2+(172)22(172)x+y2+(192)22(192)y=4504
x2+y217x19y+6504=4504
x2+y217x19y+50=0
Thus the equation of the circle is:
x2+y217x19y+50=0

Note: Alternate method:
We can solve this question by directly substituting the values of all the points (vertices of ΔABC) in the general equation of the circle. From the resulting equations, we need to find the coordinates of the center of the circle and constant (h, k) and c. Then by substituting these values of (h, k) and c in the general equation of the circle, we get the required equation of the circle.