Answer
Verified
498.9k+ views
Hint: To solve the above problem we need to know the concept of transformation of the axis, because the question says we have to find the equation of the curve when it has been transferred from the origin to the given point which is the transformation concept.
Complete step-by-step answer:
Let us consider the given as old equation
Old equation is $ \Rightarrow $ $2{x^2} + {y^2} - 3x + 5y - 8 = 0 - - - - - - - > (1)$
From the old equation we say the (x, y) are the old coordinates
Now let (X, Y) be the new coordinates after shifting from origin to new point P (-1, 2) let the point be (h, k).
Now by the concept of transformation of axis we know that
$x = X + h$ $y = Y + K$
Now from using the above concept we can say that,
$x = X - 1$ $y = Y + 2$$ - - - - - - - - - > $(New values)
Now on substituting the new values in equation we get we can write the equation as
$
\Rightarrow 2{(X - 1)^2} + {(Y + 2)^2} - 3(X - 1) + 5(Y + 2) = 0 \\
\Rightarrow 2{X^2} + 1 - 4X + {Y^2} + 4 + 4Y - 3X + 3 + 5Y + 10 = 0 \\
\Rightarrow 2{X^2} + {Y^2} - 7X + 9Y + 18 = 0 \\
$
Thus they mentioned that direction of axis has not changed we have to replace the (X,Y) with (x ,y)
On replacing the values we get equation in form $2{x^2} + {y^2} - 7x + 9y + 18 = 0$
Hence the equation is of ellipse.
Note: In this problem we have considered the coordinates of given equation as old coordinates .And they mentioned that the curve of the equation has been shifted from origin to point p which we have considered as (h, k).Now by using the concept of transformation we have solved the equation. Finally it is mentioned that transformation has been done without changing the direction so as we have replaced the new coordinates with old coordinates.
Complete step-by-step answer:
Let us consider the given as old equation
Old equation is $ \Rightarrow $ $2{x^2} + {y^2} - 3x + 5y - 8 = 0 - - - - - - - > (1)$
From the old equation we say the (x, y) are the old coordinates
Now let (X, Y) be the new coordinates after shifting from origin to new point P (-1, 2) let the point be (h, k).
Now by the concept of transformation of axis we know that
$x = X + h$ $y = Y + K$
Now from using the above concept we can say that,
$x = X - 1$ $y = Y + 2$$ - - - - - - - - - > $(New values)
Now on substituting the new values in equation we get we can write the equation as
$
\Rightarrow 2{(X - 1)^2} + {(Y + 2)^2} - 3(X - 1) + 5(Y + 2) = 0 \\
\Rightarrow 2{X^2} + 1 - 4X + {Y^2} + 4 + 4Y - 3X + 3 + 5Y + 10 = 0 \\
\Rightarrow 2{X^2} + {Y^2} - 7X + 9Y + 18 = 0 \\
$
Thus they mentioned that direction of axis has not changed we have to replace the (X,Y) with (x ,y)
On replacing the values we get equation in form $2{x^2} + {y^2} - 7x + 9y + 18 = 0$
Hence the equation is of ellipse.
Note: In this problem we have considered the coordinates of given equation as old coordinates .And they mentioned that the curve of the equation has been shifted from origin to point p which we have considered as (h, k).Now by using the concept of transformation we have solved the equation. Finally it is mentioned that transformation has been done without changing the direction so as we have replaced the new coordinates with old coordinates.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE