
Find the equation of the curve $2{x^2} + {y^2} - 3x + 5y - 8 = 0$ when origin is transferred to the point (-1, 2) without changing the direction of the axis.
Answer
621k+ views
Hint: To solve the above problem we need to know the concept of transformation of the axis, because the question says we have to find the equation of the curve when it has been transferred from the origin to the given point which is the transformation concept.
Complete step-by-step answer:
Let us consider the given as old equation
Old equation is $ \Rightarrow $ $2{x^2} + {y^2} - 3x + 5y - 8 = 0 - - - - - - - > (1)$
From the old equation we say the (x, y) are the old coordinates
Now let (X, Y) be the new coordinates after shifting from origin to new point P (-1, 2) let the point be (h, k).
Now by the concept of transformation of axis we know that
$x = X + h$ $y = Y + K$
Now from using the above concept we can say that,
$x = X - 1$ $y = Y + 2$$ - - - - - - - - - > $(New values)
Now on substituting the new values in equation we get we can write the equation as
$
\Rightarrow 2{(X - 1)^2} + {(Y + 2)^2} - 3(X - 1) + 5(Y + 2) = 0 \\
\Rightarrow 2{X^2} + 1 - 4X + {Y^2} + 4 + 4Y - 3X + 3 + 5Y + 10 = 0 \\
\Rightarrow 2{X^2} + {Y^2} - 7X + 9Y + 18 = 0 \\
$
Thus they mentioned that direction of axis has not changed we have to replace the (X,Y) with (x ,y)
On replacing the values we get equation in form $2{x^2} + {y^2} - 7x + 9y + 18 = 0$
Hence the equation is of ellipse.
Note: In this problem we have considered the coordinates of given equation as old coordinates .And they mentioned that the curve of the equation has been shifted from origin to point p which we have considered as (h, k).Now by using the concept of transformation we have solved the equation. Finally it is mentioned that transformation has been done without changing the direction so as we have replaced the new coordinates with old coordinates.
Complete step-by-step answer:
Let us consider the given as old equation
Old equation is $ \Rightarrow $ $2{x^2} + {y^2} - 3x + 5y - 8 = 0 - - - - - - - > (1)$
From the old equation we say the (x, y) are the old coordinates
Now let (X, Y) be the new coordinates after shifting from origin to new point P (-1, 2) let the point be (h, k).
Now by the concept of transformation of axis we know that
$x = X + h$ $y = Y + K$
Now from using the above concept we can say that,
$x = X - 1$ $y = Y + 2$$ - - - - - - - - - > $(New values)
Now on substituting the new values in equation we get we can write the equation as
$
\Rightarrow 2{(X - 1)^2} + {(Y + 2)^2} - 3(X - 1) + 5(Y + 2) = 0 \\
\Rightarrow 2{X^2} + 1 - 4X + {Y^2} + 4 + 4Y - 3X + 3 + 5Y + 10 = 0 \\
\Rightarrow 2{X^2} + {Y^2} - 7X + 9Y + 18 = 0 \\
$
Thus they mentioned that direction of axis has not changed we have to replace the (X,Y) with (x ,y)
On replacing the values we get equation in form $2{x^2} + {y^2} - 7x + 9y + 18 = 0$
Hence the equation is of ellipse.
Note: In this problem we have considered the coordinates of given equation as old coordinates .And they mentioned that the curve of the equation has been shifted from origin to point p which we have considered as (h, k).Now by using the concept of transformation we have solved the equation. Finally it is mentioned that transformation has been done without changing the direction so as we have replaced the new coordinates with old coordinates.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

