Answer
Verified
449.4k+ views
Hint: We first define the general equation of hyperbola and its different parts. We then equate that with the given values of foci and eccentricity. Using the values, we find out the common characteristics of the conic and also the equation of the hyperbola.
Complete step by step answer:
We define the general equation of hyperbola and its different parts.
General equation of ellipse is $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$. The eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
The centre will be $\left( \alpha ,\beta \right)$. Coordinates of vertices are $\left( \alpha \pm a,\beta \right)$. Coordinates of foci are $\left( \alpha \pm ae,\beta \right)$. Equations of the directrices are $x=\alpha \pm \dfrac{a}{e}$. The difference between two foci is $2ae$.
Now for our given hyperbola foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2. The difference between two foci are $\left| 8-4 \right|=4$ unit. So, $2ae=4\Rightarrow ae=2$.
Equating the y coordinate of the foci we get $\beta =2$.
Equating the x coordinate of the foci we get $\alpha \pm ae=4,8$.
The eccentricity of the ellipse is \[e=2\]. So, $2a=2\Rightarrow a=1$.
The general formula of eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
Putting values, we get \[2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}}\]. Solving we get
\[\begin{align}
& 2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}} \\
& \Rightarrow 1+{{b}^{2}}={{2}^{2}}=4 \\
& \Rightarrow {{b}^{2}}=3 \\
\end{align}\]
From the equation $\alpha \pm ae=4,8$, we get the value of $\alpha =6$.
We now place all the values of $\alpha ,\beta ,a,b$ in $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$ to find the equation.
The equation is $\dfrac{{{\left( x-6 \right)}^{2}}}{1}-\dfrac{{{\left( y-2 \right)}^{2}}}{3}=1\Rightarrow 3{{\left( x-6 \right)}^{2}}-{{\left( y-2 \right)}^{2}}=3$.
Note: We need to remember that the foci are on the axis of the hyperbola. So, they are on the same line and that’s why we found the distance of the foci as the difference of their y coordinates. When we get the square values of a and b we don’t need to solve as in the equation they are already in their square form.
Complete step by step answer:
We define the general equation of hyperbola and its different parts.
General equation of ellipse is $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$. The eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
The centre will be $\left( \alpha ,\beta \right)$. Coordinates of vertices are $\left( \alpha \pm a,\beta \right)$. Coordinates of foci are $\left( \alpha \pm ae,\beta \right)$. Equations of the directrices are $x=\alpha \pm \dfrac{a}{e}$. The difference between two foci is $2ae$.
Now for our given hyperbola foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2. The difference between two foci are $\left| 8-4 \right|=4$ unit. So, $2ae=4\Rightarrow ae=2$.
Equating the y coordinate of the foci we get $\beta =2$.
Equating the x coordinate of the foci we get $\alpha \pm ae=4,8$.
The eccentricity of the ellipse is \[e=2\]. So, $2a=2\Rightarrow a=1$.
The general formula of eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
Putting values, we get \[2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}}\]. Solving we get
\[\begin{align}
& 2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}} \\
& \Rightarrow 1+{{b}^{2}}={{2}^{2}}=4 \\
& \Rightarrow {{b}^{2}}=3 \\
\end{align}\]
From the equation $\alpha \pm ae=4,8$, we get the value of $\alpha =6$.
We now place all the values of $\alpha ,\beta ,a,b$ in $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$ to find the equation.
The equation is $\dfrac{{{\left( x-6 \right)}^{2}}}{1}-\dfrac{{{\left( y-2 \right)}^{2}}}{3}=1\Rightarrow 3{{\left( x-6 \right)}^{2}}-{{\left( y-2 \right)}^{2}}=3$.
Note: We need to remember that the foci are on the axis of the hyperbola. So, they are on the same line and that’s why we found the distance of the foci as the difference of their y coordinates. When we get the square values of a and b we don’t need to solve as in the equation they are already in their square form.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE