Find the equation of the parabola whose axis is parallel to $y-$axis and which passes through the points \[\left( 0,2 \right),\left( -1,0 \right)\] and \[\left( 1,6 \right)\].
Answer
Verified
504k+ views
Hint: The general form of the parabola \[y=a{{x}^{2}}+bx+c\] is to be used while solving this question.
Complete step-by-step answer:
In the question, it is given that the axis of the parabola is parallel to the $y-$axis. So, the parabola would look like the figure below.
We know that the general formula for this form of parabola is given by,
\[y=a{{x}^{2}}+bx+c\ldots \ldots \ldots \left( i \right)\]
It is given in the question that the parabola passes through the points \[\left( 0,2 \right),\left( -1,0 \right)\] and \[\left( 1,6 \right)\]. Since the parabola passes through the three points, we know that these points must satisfy the equation of the parabola. So, we can substitute each point in the equation $\left( i \right)$ and formulate three sets of equations.
Considering the first point \[\left( 0,2 \right)\] and substituting the values of \[x=0,y=2\] in equation $\left( i \right)$, we get
\[\begin{align}
& 2=a\times 0+b\times 0+c \\
& c=2\ldots \ldots \ldots \left( ii \right) \\
\end{align}\]
Considering the second point \[\left( -1,0 \right)\] and substituting the values of \[x=-1,y=0\] in equation $\left( i \right)$, we get
\[\begin{align}
& 0=a\times {{\left( -1 \right)}^{2}}+b\times -1+c \\
& 0=a-b+c \\
\end{align}\]
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 0=a-b+2 \\
& b-a=2\ldots \ldots \ldots \left( iii \right) \\
\end{align}\]
Considering the last point \[\left( 1,6 \right)\] and substituting the values of \[x=1,y=6\] in equation $\left( i \right)$, we get
$\begin{align}
& 6=a\times {{1}^{2}}+b\times 1+c \\
& 6=a+b+c \\
\end{align}$
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 6=a+b+2 \\
& a+b=4\ldots \ldots \ldots \left( iv \right) \\
\end{align}\]
We have two equations \[\left( iii \right)\] and $\left( iv \right)$ to get the values of the \[a\] and $b$. So, adding the equations,
\[\dfrac{\begin{align}
& b-a=2 \\
& a+b=4 \\
\end{align}}{\begin{align}
& 2b=6 \\
& b=3 \\
\end{align}}\]
Substituting \[b=3\] in equation \[\left( iii \right)\], we get
\[\begin{align}
& 3-a=2 \\
& a=1 \\
\end{align}\]
Now we have the values as $a=1,b=3,c=2$. So, we can substitute this in equation $\left( i \right)$,
\[y={{x}^{2}}+3x+2\]
Therefore, the required equation of the parabola is obtained as \[y={{x}^{2}}+3x+2\].
Note: As three points are given in the question, we can formulate three equations and easily compute the three unknowns in the equation. If you are familiar with the cross-multiplication method, you can solve the equations and get the values of \[a,b,c\] in less time.
Complete step-by-step answer:
In the question, it is given that the axis of the parabola is parallel to the $y-$axis. So, the parabola would look like the figure below.
We know that the general formula for this form of parabola is given by,
\[y=a{{x}^{2}}+bx+c\ldots \ldots \ldots \left( i \right)\]
It is given in the question that the parabola passes through the points \[\left( 0,2 \right),\left( -1,0 \right)\] and \[\left( 1,6 \right)\]. Since the parabola passes through the three points, we know that these points must satisfy the equation of the parabola. So, we can substitute each point in the equation $\left( i \right)$ and formulate three sets of equations.
Considering the first point \[\left( 0,2 \right)\] and substituting the values of \[x=0,y=2\] in equation $\left( i \right)$, we get
\[\begin{align}
& 2=a\times 0+b\times 0+c \\
& c=2\ldots \ldots \ldots \left( ii \right) \\
\end{align}\]
Considering the second point \[\left( -1,0 \right)\] and substituting the values of \[x=-1,y=0\] in equation $\left( i \right)$, we get
\[\begin{align}
& 0=a\times {{\left( -1 \right)}^{2}}+b\times -1+c \\
& 0=a-b+c \\
\end{align}\]
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 0=a-b+2 \\
& b-a=2\ldots \ldots \ldots \left( iii \right) \\
\end{align}\]
Considering the last point \[\left( 1,6 \right)\] and substituting the values of \[x=1,y=6\] in equation $\left( i \right)$, we get
$\begin{align}
& 6=a\times {{1}^{2}}+b\times 1+c \\
& 6=a+b+c \\
\end{align}$
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 6=a+b+2 \\
& a+b=4\ldots \ldots \ldots \left( iv \right) \\
\end{align}\]
We have two equations \[\left( iii \right)\] and $\left( iv \right)$ to get the values of the \[a\] and $b$. So, adding the equations,
\[\dfrac{\begin{align}
& b-a=2 \\
& a+b=4 \\
\end{align}}{\begin{align}
& 2b=6 \\
& b=3 \\
\end{align}}\]
Substituting \[b=3\] in equation \[\left( iii \right)\], we get
\[\begin{align}
& 3-a=2 \\
& a=1 \\
\end{align}\]
Now we have the values as $a=1,b=3,c=2$. So, we can substitute this in equation $\left( i \right)$,
\[y={{x}^{2}}+3x+2\]
Therefore, the required equation of the parabola is obtained as \[y={{x}^{2}}+3x+2\].
Note: As three points are given in the question, we can formulate three equations and easily compute the three unknowns in the equation. If you are familiar with the cross-multiplication method, you can solve the equations and get the values of \[a,b,c\] in less time.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE