Answer
Verified
430.5k+ views
Hint: Apply the sum and difference Trigonometric identities to find the exact functional value.
Here write $\tan 345$ into two parts mean $\tan \left( 145+180 \right)$
Use the formula for $\sin \left( a-b \right)=\sin a.\cos b-\sin b.\cos a$
For solving the problem and $\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b$
Complete step by step solution:As per given problem trigonometric function is $\tan 345$ Now, we have to split $'345'$ into two parts in the form of addition by adding any two numbers whose addition should be $345{}^\circ $
$\therefore \tan 345{}^\circ =\tan \left( 165{}^\circ +180{}^\circ \right)$
$=\tan \left( 165{}^\circ \right)$
Neglecting $\tan \left( 180{}^\circ \right)$ because the solution of $\tan \left( 180{}^\circ \right)=\dfrac{\sin \left( 180{}^\circ \right)}{\cos \left( 180{}^\circ \right)}$
It comes from the trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }=0$
Value of $\sin \left( 180{}^\circ \right)$ is equal to $0$ and value of $\cos \left( 180{}^\circ \right)$ is $-1$
$\tan \left( 180{}^\circ \right)=\dfrac{0}{-1}$
$\tan \left( 180{}^\circ \right)=0$
Therefore neglect $\tan \left( 180{}^\circ \right)$ and solve $\tan \left( 165{}^\circ \right)$
$\tan \left( 165{}^\circ \right)=-15\tan \text{degree}=-\tan 15{}^\circ $
Here again apply the formula of $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Therefore,
$\tan 345{}^\circ =-\tan 15{}^\circ =\dfrac{-\sin 15{}^\circ }{\cos 15{}^\circ }...(ii)$
From the above ${{1}^{st}}$ equation, firstly solve the numerator,
$\therefore \sin \left( 15{}^\circ \right)$
Split $15{}^\circ $ into two parts whose solution will be $15{}^\circ $ after subtracting.
$\therefore \sin \left( 15{}^\circ \right)=\sin \left( 45{}^\circ -30{}^\circ \right)$
This $\sin \left( 45{}^\circ -30{}^\circ \right)$ is applicable to the trigonometric identity which is.
$\sin \left( a-b \right)=\sin a.\cos b-\sin b.\cos a$
Here, $a=45{}^\circ $
$b=30{}^\circ $
Apply trigonometric identity.
$\sin \left( 15{}^\circ \right)=\left( \sin 45{}^\circ -30{}^\circ \right)=\sin 45.\cos 30-\sin 30.\cos 45$
$=\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{2} \right).\left( \dfrac{\sqrt{2}}{2} \right)$
This above value is written from a trigonometric function table.
Simplify the above equation.
$=\left( \dfrac{\sqrt{6}}{4} \right)-\left( \dfrac{\sqrt{2}}{4} \right)$
$\therefore \sin \left( 15{}^\circ \right)=\dfrac{\sqrt{6}-\sqrt{2}}{4}$
Solve denominator of ${{1}^{st}}$ equation, which is $\cos \left( 15{}^\circ \right)$ which can also be written as,
$\cos \left( 45{}^\circ -30{}^\circ \right)$
Here, apply $\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b$ trigonometric identity.
$\cos \left( 15{}^\circ \right)=\cos \left( 45{}^\circ -30{}^\circ \right)=\cos 45{}^\circ .\cos 30{}^\circ +\sin 45{}^\circ -\sin 30{}^\circ $
$=\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{1}{2} \right)$
Multiplying and adding above value.
$=\left( \dfrac{\sqrt{6}}{4} \right)+\left( \dfrac{\sqrt{2}}{4} \right)$
$\cos \left( 15{}^\circ \right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}$
Denominators can be written any $'1'$ time as the denominator is common.
From equation ${{1}^{st}}$
$\tan 345{}^\circ =-\tan 15{}^\circ =\dfrac{-\sin 15{}^\circ }{\cos 15{}^\circ }$
$=\dfrac{\sqrt{6}-\sqrt{2}}{4}$
$=\dfrac{\sqrt{6}+\sqrt{2}}{4}$
$=\dfrac{\sqrt{6}-\sqrt{2}}{4}\times \dfrac{4}{\sqrt{6}+\sqrt{2}}$
Here, denominator comes in multiplication with numerator and as per the rule denominator will be reciprocal and $'4'$ in division and $'4'$ in multiplication will get canceled.
Therefore,
$\tan 345{}^\circ =\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}$
Additional Information:
The main sum and difference trigonometric identities are following.
(1) $\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b$
(2) $\cos \left( a+b \right)=\cos a.\cos b-\sin a.\sin b$
(3) $\sin \left( a+b \right)=\sin a.\cos b+\sin b.\cos a$
(4) $\sin a\left( a+b \right)=\sin a.\cos b+\sin b.\cos a$
(5) $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}$
(6) $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a.\tan b}$
Here is one example which is applicable to sum and difference trigonometric identities.
Here is one example which is applicable to sum and difference trigonometric identities.
(1) find $\sin 2a$
$=\sin \left( a+a \right)$ split into two parts, Apply the sum or difference trigonometric identity.
i.e. $\sin \left( a+b \right)=\sin a.\cos b+\sin b.\cos a$
$\because \sin 2a=\sin \left( a+a \right)$
$=\sin a.\cos a+\sin a.\cos a$
$\sin 2a=2.\left( \sin a.\cos a \right)$
Note:
Always remember while applying sum and difference identities in the function split the value of degree into two points for saving sometimes.
Apply the trigonometric identities such as $\tan \theta =\dfrac{\sin \theta }{\cos \theta },\sin \theta =\dfrac{1}{\cos \theta }$
Where applicable,
Remember the value of trigonometric function angle such as $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$
$\sec 30{}^\circ =\dfrac{2}{\sqrt{3}}$, etc.
Here write $\tan 345$ into two parts mean $\tan \left( 145+180 \right)$
Use the formula for $\sin \left( a-b \right)=\sin a.\cos b-\sin b.\cos a$
For solving the problem and $\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b$
Complete step by step solution:As per given problem trigonometric function is $\tan 345$ Now, we have to split $'345'$ into two parts in the form of addition by adding any two numbers whose addition should be $345{}^\circ $
$\therefore \tan 345{}^\circ =\tan \left( 165{}^\circ +180{}^\circ \right)$
$=\tan \left( 165{}^\circ \right)$
Neglecting $\tan \left( 180{}^\circ \right)$ because the solution of $\tan \left( 180{}^\circ \right)=\dfrac{\sin \left( 180{}^\circ \right)}{\cos \left( 180{}^\circ \right)}$
It comes from the trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }=0$
Value of $\sin \left( 180{}^\circ \right)$ is equal to $0$ and value of $\cos \left( 180{}^\circ \right)$ is $-1$
$\tan \left( 180{}^\circ \right)=\dfrac{0}{-1}$
$\tan \left( 180{}^\circ \right)=0$
Therefore neglect $\tan \left( 180{}^\circ \right)$ and solve $\tan \left( 165{}^\circ \right)$
$\tan \left( 165{}^\circ \right)=-15\tan \text{degree}=-\tan 15{}^\circ $
Here again apply the formula of $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Therefore,
$\tan 345{}^\circ =-\tan 15{}^\circ =\dfrac{-\sin 15{}^\circ }{\cos 15{}^\circ }...(ii)$
From the above ${{1}^{st}}$ equation, firstly solve the numerator,
$\therefore \sin \left( 15{}^\circ \right)$
Split $15{}^\circ $ into two parts whose solution will be $15{}^\circ $ after subtracting.
$\therefore \sin \left( 15{}^\circ \right)=\sin \left( 45{}^\circ -30{}^\circ \right)$
This $\sin \left( 45{}^\circ -30{}^\circ \right)$ is applicable to the trigonometric identity which is.
$\sin \left( a-b \right)=\sin a.\cos b-\sin b.\cos a$
Here, $a=45{}^\circ $
$b=30{}^\circ $
Apply trigonometric identity.
$\sin \left( 15{}^\circ \right)=\left( \sin 45{}^\circ -30{}^\circ \right)=\sin 45.\cos 30-\sin 30.\cos 45$
$=\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{2} \right).\left( \dfrac{\sqrt{2}}{2} \right)$
This above value is written from a trigonometric function table.
Simplify the above equation.
$=\left( \dfrac{\sqrt{6}}{4} \right)-\left( \dfrac{\sqrt{2}}{4} \right)$
$\therefore \sin \left( 15{}^\circ \right)=\dfrac{\sqrt{6}-\sqrt{2}}{4}$
Solve denominator of ${{1}^{st}}$ equation, which is $\cos \left( 15{}^\circ \right)$ which can also be written as,
$\cos \left( 45{}^\circ -30{}^\circ \right)$
Here, apply $\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b$ trigonometric identity.
$\cos \left( 15{}^\circ \right)=\cos \left( 45{}^\circ -30{}^\circ \right)=\cos 45{}^\circ .\cos 30{}^\circ +\sin 45{}^\circ -\sin 30{}^\circ $
$=\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{1}{2} \right)$
Multiplying and adding above value.
$=\left( \dfrac{\sqrt{6}}{4} \right)+\left( \dfrac{\sqrt{2}}{4} \right)$
$\cos \left( 15{}^\circ \right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}$
Denominators can be written any $'1'$ time as the denominator is common.
From equation ${{1}^{st}}$
$\tan 345{}^\circ =-\tan 15{}^\circ =\dfrac{-\sin 15{}^\circ }{\cos 15{}^\circ }$
$=\dfrac{\sqrt{6}-\sqrt{2}}{4}$
$=\dfrac{\sqrt{6}+\sqrt{2}}{4}$
$=\dfrac{\sqrt{6}-\sqrt{2}}{4}\times \dfrac{4}{\sqrt{6}+\sqrt{2}}$
Here, denominator comes in multiplication with numerator and as per the rule denominator will be reciprocal and $'4'$ in division and $'4'$ in multiplication will get canceled.
Therefore,
$\tan 345{}^\circ =\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}$
Additional Information:
The main sum and difference trigonometric identities are following.
(1) $\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b$
(2) $\cos \left( a+b \right)=\cos a.\cos b-\sin a.\sin b$
(3) $\sin \left( a+b \right)=\sin a.\cos b+\sin b.\cos a$
(4) $\sin a\left( a+b \right)=\sin a.\cos b+\sin b.\cos a$
(5) $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}$
(6) $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a.\tan b}$
Here is one example which is applicable to sum and difference trigonometric identities.
Here is one example which is applicable to sum and difference trigonometric identities.
(1) find $\sin 2a$
$=\sin \left( a+a \right)$ split into two parts, Apply the sum or difference trigonometric identity.
i.e. $\sin \left( a+b \right)=\sin a.\cos b+\sin b.\cos a$
$\because \sin 2a=\sin \left( a+a \right)$
$=\sin a.\cos a+\sin a.\cos a$
$\sin 2a=2.\left( \sin a.\cos a \right)$
Note:
Always remember while applying sum and difference identities in the function split the value of degree into two points for saving sometimes.
Apply the trigonometric identities such as $\tan \theta =\dfrac{\sin \theta }{\cos \theta },\sin \theta =\dfrac{1}{\cos \theta }$
Where applicable,
Remember the value of trigonometric function angle such as $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$
$\sec 30{}^\circ =\dfrac{2}{\sqrt{3}}$, etc.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE