Answer
Verified
363k+ views
Hint: In order to solve this question, we will first find out the values of \[\cos 180^\circ \] and \[\sin 180^\circ \] .For this, we consider the unit circle in which the Cartesian plane is divided into four quadrants. And we know that the value \[{\text{180\;degree}}\] takes place in the second quadrant. As the cosine value in the second quadrant is always negative and the sine value in the second quadrant is always positive. So, from the value of \[{\text{cos0}}^\circ \] and \[{\text{sin0}}^\circ \] we will obtain the values of \[\cos 180^\circ \] and \[\sin 180^\circ \] respectively. And finally substitute it in the given expression and get the desired result.
Complete step-by-step answer:
We are asked to find the exact value of \[\cos 180{\text{ degrees}} - \sin 180{\text{ degrees}}\]
So, first of all we will find out the values of \[\cos 180^\circ \] and \[\sin 180^\circ \]
Let us consider the unit circle in which the Cartesian plane is divided into four quadrants.
Now, we know that the value \[{\text{180\;degree}}\] takes place in the second quadrant.
As the cosine value in the second quadrant always takes a negative value.
So, from the value of \[{\text{cos0}}^\circ \] , we will obtain the value of \[\cos 180^\circ \]
We know that the exact value of \[{\text{cos0}}^\circ \] is \[1\]
So, \[\cos 180^\circ \] is \[ - \left( {\cos 0^\circ } \right)\] which is equal to \[\left( { - 1} \right)\]
Therefore, the value of \[\cos 180^\circ = - 1\]
Now the sine value in the second quadrant always takes a positive value.
So, from the value of \[{\text{sin0}}^\circ \] , we will obtain the value of \[\sin 180^\circ \]
We know that the exact value of \[{\text{sin0}}^\circ \] is \[0\]
So, \[\sin 180^\circ \] is \[ + \left( {\sin 0^\circ } \right)\] which is equal to \[\left( { + 0} \right)\]
Therefore, the value of \[\sin 180^\circ = 0\]
Now, we substitute the value of \[\cos 180^\circ \] and \[\sin 180^\circ \] in \[\cos 180{\text{ degrees}} - \sin 180{\text{ degrees}}\]
Therefore, we get
\[\cos 180^\circ - \sin 180^\circ = - 1 - 0 = - 1\]
Hence, the required exact value of \[\cos 180^\circ - \sin 180^\circ \] is \[-1\]
So, the correct answer is “-1”.
Note: We can also explain this question in another way i.e.,
We know that within the unit circle, cosine provides the x coordinate of a point on the surface of the circle and sine provides the y coordinate of a point on the surface of the circle.
At \[180^\circ \] the point on the unit circle surface is \[\left( { - 1,0} \right)\] .So this means:
\[x = \cos \left( {180^\circ } \right) = - 1\]
\[y = \sin \left( {180^\circ } \right) = 0\]
So, the exact value of \[\cos 180^\circ - \sin 180^\circ = - 1 - 0 = - 1\]
Also, we can find the value of \[\cos 180^\circ \] and \[\sin 180^\circ \] in another way as,
\[\sin \left( {180^\circ } \right) = \sin \left( {90^\circ + 90^\circ } \right)\]
\[ \Rightarrow \sin \left( {180^\circ } \right) = \cos \left( {90^\circ } \right) = 0\]
And \[\cos \left( {180^\circ } \right) = \cos \left( {90^\circ + 90^\circ } \right)\]
\[ \Rightarrow \cos \left( {180^\circ } \right) = - \sin \left( {90^\circ } \right) = - 1\]
Complete step-by-step answer:
We are asked to find the exact value of \[\cos 180{\text{ degrees}} - \sin 180{\text{ degrees}}\]
So, first of all we will find out the values of \[\cos 180^\circ \] and \[\sin 180^\circ \]
Let us consider the unit circle in which the Cartesian plane is divided into four quadrants.
Now, we know that the value \[{\text{180\;degree}}\] takes place in the second quadrant.
As the cosine value in the second quadrant always takes a negative value.
So, from the value of \[{\text{cos0}}^\circ \] , we will obtain the value of \[\cos 180^\circ \]
We know that the exact value of \[{\text{cos0}}^\circ \] is \[1\]
So, \[\cos 180^\circ \] is \[ - \left( {\cos 0^\circ } \right)\] which is equal to \[\left( { - 1} \right)\]
Therefore, the value of \[\cos 180^\circ = - 1\]
Now the sine value in the second quadrant always takes a positive value.
So, from the value of \[{\text{sin0}}^\circ \] , we will obtain the value of \[\sin 180^\circ \]
We know that the exact value of \[{\text{sin0}}^\circ \] is \[0\]
So, \[\sin 180^\circ \] is \[ + \left( {\sin 0^\circ } \right)\] which is equal to \[\left( { + 0} \right)\]
Therefore, the value of \[\sin 180^\circ = 0\]
Now, we substitute the value of \[\cos 180^\circ \] and \[\sin 180^\circ \] in \[\cos 180{\text{ degrees}} - \sin 180{\text{ degrees}}\]
Therefore, we get
\[\cos 180^\circ - \sin 180^\circ = - 1 - 0 = - 1\]
Hence, the required exact value of \[\cos 180^\circ - \sin 180^\circ \] is \[-1\]
So, the correct answer is “-1”.
Note: We can also explain this question in another way i.e.,
We know that within the unit circle, cosine provides the x coordinate of a point on the surface of the circle and sine provides the y coordinate of a point on the surface of the circle.
At \[180^\circ \] the point on the unit circle surface is \[\left( { - 1,0} \right)\] .So this means:
\[x = \cos \left( {180^\circ } \right) = - 1\]
\[y = \sin \left( {180^\circ } \right) = 0\]
So, the exact value of \[\cos 180^\circ - \sin 180^\circ = - 1 - 0 = - 1\]
Also, we can find the value of \[\cos 180^\circ \] and \[\sin 180^\circ \] in another way as,
\[\sin \left( {180^\circ } \right) = \sin \left( {90^\circ + 90^\circ } \right)\]
\[ \Rightarrow \sin \left( {180^\circ } \right) = \cos \left( {90^\circ } \right) = 0\]
And \[\cos \left( {180^\circ } \right) = \cos \left( {90^\circ + 90^\circ } \right)\]
\[ \Rightarrow \cos \left( {180^\circ } \right) = - \sin \left( {90^\circ } \right) = - 1\]
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE