
How do you find the fourth roots of $ - 8 + 8\sqrt {3i} $?
Answer
552.6k+ views
Hint: First we know that complex number, the complex numbers are $1, - 1,i, - i$. The complex number denoted by $z$. If you express your complex number in polar form as $r(\cos \theta + i\sin \theta )$.
We use the ${n^{th}}$ root theorem.
$\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
This is an extension of DeMoivre’s theorem.
Where, $\alpha = \dfrac{{\theta + 360k}}{n}$ ,$k = 0,1,2,3....,n - 1$
Complete step-by-step solution:
The first thing we should recognize is if we want the $4th$ roots, $n$ will be $4$.
$n = 4$
Next we need to write this complex number in complex form. So we need to find $r$ and $\theta $
Let $a + ib$
Let $z = - 8 + 8i\sqrt 3 $
$a = - 8$ and $b = 8\sqrt 3 $
Now $r$ formula is, $r = \sqrt {{a^2} + {b^2}} $ ,
Now apply the complex number in the $r$ equation, we get
$ \Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}} $
Square on two terms
$ \Rightarrow r = \sqrt {64 + 192} $
Now add the terms,
$ \Rightarrow r = \sqrt {256} = 16$
Next we need to find $\theta $. But before we do that let’s recognize that if $a$ is negative and $b$ is positive, $\theta $ will be in this second quadrant. And we know that tangent theta is equal to $\dfrac{b}{a}$
$ \Rightarrow \tan \theta = \dfrac{b}{a}$
Now substitute $a$ and $b$ in tangent
\[ \Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}\]
Then the theta value is ${120^ \circ }$
$ \Rightarrow \theta = {120^ \circ }$
Now we find $\alpha $value,
$ \Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}$, $k = 0,1,2,3....,n - 1$
\[ \Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}\]
Let’s see if we can simplify this expression, before we $120$ divide by $4$ would be $30$degrees and $360k$ divided by 4 would be $90$degrees.
$\alpha = {30^ \circ } + {90^ \circ }k$
Now we have,
$n = 4$
$r = 16$
$\alpha = {30^ \circ } + {90^ \circ }k$
$k = 0,1,2,3.$
If $k = 0$, then $\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }$
If $k = 1$, then $\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }$
If $k = 2$, then $\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }$
If $k = 3$, then $\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }$
Now these values are substitute in the equation of $\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
If $\theta = {30^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i$
If $\theta = {120^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3 $
If $\theta = {210^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i$
If $\theta = {300^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })$
$ \Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3$
Note: The applet below shows the complex $4^{th}$ roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of $z$ indicates the given number $z$, and the segments of fourth roots ${z_0},{z_1},{z_2}$ and ${z_3}$.
We use the ${n^{th}}$ root theorem.
$\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
This is an extension of DeMoivre’s theorem.
Where, $\alpha = \dfrac{{\theta + 360k}}{n}$ ,$k = 0,1,2,3....,n - 1$
Complete step-by-step solution:
The first thing we should recognize is if we want the $4th$ roots, $n$ will be $4$.
$n = 4$
Next we need to write this complex number in complex form. So we need to find $r$ and $\theta $
Let $a + ib$
Let $z = - 8 + 8i\sqrt 3 $
$a = - 8$ and $b = 8\sqrt 3 $
Now $r$ formula is, $r = \sqrt {{a^2} + {b^2}} $ ,
Now apply the complex number in the $r$ equation, we get
$ \Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}} $
Square on two terms
$ \Rightarrow r = \sqrt {64 + 192} $
Now add the terms,
$ \Rightarrow r = \sqrt {256} = 16$
Next we need to find $\theta $. But before we do that let’s recognize that if $a$ is negative and $b$ is positive, $\theta $ will be in this second quadrant. And we know that tangent theta is equal to $\dfrac{b}{a}$
$ \Rightarrow \tan \theta = \dfrac{b}{a}$
Now substitute $a$ and $b$ in tangent
\[ \Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}\]
Then the theta value is ${120^ \circ }$
$ \Rightarrow \theta = {120^ \circ }$
Now we find $\alpha $value,
$ \Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}$, $k = 0,1,2,3....,n - 1$
\[ \Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}\]
Let’s see if we can simplify this expression, before we $120$ divide by $4$ would be $30$degrees and $360k$ divided by 4 would be $90$degrees.
$\alpha = {30^ \circ } + {90^ \circ }k$
Now we have,
$n = 4$
$r = 16$
$\alpha = {30^ \circ } + {90^ \circ }k$
$k = 0,1,2,3.$
If $k = 0$, then $\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }$
If $k = 1$, then $\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }$
If $k = 2$, then $\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }$
If $k = 3$, then $\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }$
Now these values are substitute in the equation of $\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
If $\theta = {30^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i$
If $\theta = {120^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3 $
If $\theta = {210^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i$
If $\theta = {300^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })$
$ \Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3$
Note: The applet below shows the complex $4^{th}$ roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of $z$ indicates the given number $z$, and the segments of fourth roots ${z_0},{z_1},{z_2}$ and ${z_3}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

