Answer
Verified
430.2k+ views
Hint: First we know that complex number, the complex numbers are $1, - 1,i, - i$. The complex number denoted by $z$. If you express your complex number in polar form as $r(\cos \theta + i\sin \theta )$.
We use the ${n^{th}}$ root theorem.
$\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
This is an extension of DeMoivre’s theorem.
Where, $\alpha = \dfrac{{\theta + 360k}}{n}$ ,$k = 0,1,2,3....,n - 1$
Complete step-by-step solution:
The first thing we should recognize is if we want the $4th$ roots, $n$ will be $4$.
$n = 4$
Next we need to write this complex number in complex form. So we need to find $r$ and $\theta $
Let $a + ib$
Let $z = - 8 + 8i\sqrt 3 $
$a = - 8$ and $b = 8\sqrt 3 $
Now $r$ formula is, $r = \sqrt {{a^2} + {b^2}} $ ,
Now apply the complex number in the $r$ equation, we get
$ \Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}} $
Square on two terms
$ \Rightarrow r = \sqrt {64 + 192} $
Now add the terms,
$ \Rightarrow r = \sqrt {256} = 16$
Next we need to find $\theta $. But before we do that let’s recognize that if $a$ is negative and $b$ is positive, $\theta $ will be in this second quadrant. And we know that tangent theta is equal to $\dfrac{b}{a}$
$ \Rightarrow \tan \theta = \dfrac{b}{a}$
Now substitute $a$ and $b$ in tangent
\[ \Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}\]
Then the theta value is ${120^ \circ }$
$ \Rightarrow \theta = {120^ \circ }$
Now we find $\alpha $value,
$ \Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}$, $k = 0,1,2,3....,n - 1$
\[ \Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}\]
Let’s see if we can simplify this expression, before we $120$ divide by $4$ would be $30$degrees and $360k$ divided by 4 would be $90$degrees.
$\alpha = {30^ \circ } + {90^ \circ }k$
Now we have,
$n = 4$
$r = 16$
$\alpha = {30^ \circ } + {90^ \circ }k$
$k = 0,1,2,3.$
If $k = 0$, then $\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }$
If $k = 1$, then $\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }$
If $k = 2$, then $\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }$
If $k = 3$, then $\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }$
Now these values are substitute in the equation of $\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
If $\theta = {30^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i$
If $\theta = {120^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3 $
If $\theta = {210^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i$
If $\theta = {300^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })$
$ \Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3$
Note: The applet below shows the complex $4^{th}$ roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of $z$ indicates the given number $z$, and the segments of fourth roots ${z_0},{z_1},{z_2}$ and ${z_3}$.
We use the ${n^{th}}$ root theorem.
$\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
This is an extension of DeMoivre’s theorem.
Where, $\alpha = \dfrac{{\theta + 360k}}{n}$ ,$k = 0,1,2,3....,n - 1$
Complete step-by-step solution:
The first thing we should recognize is if we want the $4th$ roots, $n$ will be $4$.
$n = 4$
Next we need to write this complex number in complex form. So we need to find $r$ and $\theta $
Let $a + ib$
Let $z = - 8 + 8i\sqrt 3 $
$a = - 8$ and $b = 8\sqrt 3 $
Now $r$ formula is, $r = \sqrt {{a^2} + {b^2}} $ ,
Now apply the complex number in the $r$ equation, we get
$ \Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}} $
Square on two terms
$ \Rightarrow r = \sqrt {64 + 192} $
Now add the terms,
$ \Rightarrow r = \sqrt {256} = 16$
Next we need to find $\theta $. But before we do that let’s recognize that if $a$ is negative and $b$ is positive, $\theta $ will be in this second quadrant. And we know that tangent theta is equal to $\dfrac{b}{a}$
$ \Rightarrow \tan \theta = \dfrac{b}{a}$
Now substitute $a$ and $b$ in tangent
\[ \Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}\]
Then the theta value is ${120^ \circ }$
$ \Rightarrow \theta = {120^ \circ }$
Now we find $\alpha $value,
$ \Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}$, $k = 0,1,2,3....,n - 1$
\[ \Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}\]
Let’s see if we can simplify this expression, before we $120$ divide by $4$ would be $30$degrees and $360k$ divided by 4 would be $90$degrees.
$\alpha = {30^ \circ } + {90^ \circ }k$
Now we have,
$n = 4$
$r = 16$
$\alpha = {30^ \circ } + {90^ \circ }k$
$k = 0,1,2,3.$
If $k = 0$, then $\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }$
If $k = 1$, then $\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }$
If $k = 2$, then $\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }$
If $k = 3$, then $\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }$
Now these values are substitute in the equation of $\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
If $\theta = {30^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i$
If $\theta = {120^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3 $
If $\theta = {210^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i$
If $\theta = {300^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })$
$ \Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3$
Note: The applet below shows the complex $4^{th}$ roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of $z$ indicates the given number $z$, and the segments of fourth roots ${z_0},{z_1},{z_2}$ and ${z_3}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE