
Find the general value of $\theta $, if $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$.
(A) $\left[ {n\pi + \dfrac{\pi }{5}} \right]$ (B) $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$ (C) $\left( {2n \pm \dfrac{1}{6}} \right)\dfrac{\pi }{6}$ (D) $\left( {n + \dfrac{1}{3}} \right)\dfrac{\pi }{5}$
Answer
620.4k+ views
Hint: Convert the given equation in equation containing $\tan 5\theta $ using the formula:
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
The given equation is $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$. This can be written as:
\[
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) + \tan 2\theta \tan 3\theta = 1, \\
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) = 1 - \tan 2\theta \tan 3\theta , \\
\Rightarrow \sqrt 3 \dfrac{{\left( {\tan 2\theta + \tan 3\theta } \right)}}{{1 - \tan 2\theta \tan 3\theta }} = 1, \\
\Rightarrow \dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \dfrac{1}{{\sqrt 3 }} ....(i) \\
\]
We know that, $\dfrac{1}{{\sqrt 3 }} = \tan \dfrac{\pi }{6}$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, if we substitute $A = 2\theta $ and $B = 3\theta $, we have $\dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \tan 5\theta $. Putting these values in equation \[(i)\], we’ll get:
$
\Rightarrow \tan 5\theta = \tan \dfrac{\pi }{6}, \\
\Rightarrow 5\theta = n\pi + \dfrac{\pi }{6}, \\
\Rightarrow \theta = \dfrac{1}{5}\left( {n\pi + \dfrac{\pi }{6}} \right), \\
\Rightarrow \theta = \left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5} \\
$
Thus, the general value of $\theta $ is $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$. (B) is the correct option.
Note: In the above equation, we get $\tan 5\theta = \tan \dfrac{\pi }{6}$. As we know that $\tan x$ is periodic with period $\pi $, that’s why instead of $5\theta = \dfrac{\pi }{6}$ we have to take $5\theta = n\pi + \dfrac{\pi }{6}$. From this we can say that the value of $5\theta $ will repeat after every integral multiple of $\pi $.
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
The given equation is $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$. This can be written as:
\[
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) + \tan 2\theta \tan 3\theta = 1, \\
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) = 1 - \tan 2\theta \tan 3\theta , \\
\Rightarrow \sqrt 3 \dfrac{{\left( {\tan 2\theta + \tan 3\theta } \right)}}{{1 - \tan 2\theta \tan 3\theta }} = 1, \\
\Rightarrow \dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \dfrac{1}{{\sqrt 3 }} ....(i) \\
\]
We know that, $\dfrac{1}{{\sqrt 3 }} = \tan \dfrac{\pi }{6}$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, if we substitute $A = 2\theta $ and $B = 3\theta $, we have $\dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \tan 5\theta $. Putting these values in equation \[(i)\], we’ll get:
$
\Rightarrow \tan 5\theta = \tan \dfrac{\pi }{6}, \\
\Rightarrow 5\theta = n\pi + \dfrac{\pi }{6}, \\
\Rightarrow \theta = \dfrac{1}{5}\left( {n\pi + \dfrac{\pi }{6}} \right), \\
\Rightarrow \theta = \left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5} \\
$
Thus, the general value of $\theta $ is $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$. (B) is the correct option.
Note: In the above equation, we get $\tan 5\theta = \tan \dfrac{\pi }{6}$. As we know that $\tan x$ is periodic with period $\pi $, that’s why instead of $5\theta = \dfrac{\pi }{6}$ we have to take $5\theta = n\pi + \dfrac{\pi }{6}$. From this we can say that the value of $5\theta $ will repeat after every integral multiple of $\pi $.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

