Answer
Verified
448.8k+ views
Hint: First of all, we should divide 32 and 48 into prime factors by the method of factorization. After prime factorization, we should have the common factors of 32 and 48. Among the factors of 32 and 48, we have to find the highest common factor of 32 and 48. Now to find LCM, we have to find the multiples of 32 and 48. Among the multiples of 32 and 48, we have to find the least common multiple of 32 and 48.
Complete step-by-step solution -
Before solving the question, we should know the definition of HCF and LCM. HCF is called as the highest common factor. LCM is called least common multiple.
To find HCF of 32 and 48, we have to divide 32 and 48 into factors. We will use the prime factorization method as below,
$\begin{align}
& 2\left| \!{\underline {\,
32 \,}} \right. \\
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1 \\
\end{align}$
$\begin{align}
& 2\left| \!{\underline {\,
48 \,}} \right. \\
& 2\left| \!{\underline {\,
24 \,}} \right. \\
& 2\left| \!{\underline {\,
12 \,}} \right. \\
& 2\left| \!{\underline {\,
6 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& 1 \\
\end{align}$
From the above, it is clear that $32=2\times 2\times 2\times 2\times 2$ and $48=2\times 2\times 2\times 2\times 3$ .
We get that the highest common factors of 32 and 48 are $2\times 2\times 2\times 2\Rightarrow 16$.
So, the greatest common factor of all common factors of 32 and 48 is equal to 16.
So, the H.C.F of 32 and 48 is equal to 16.
To find LCM of 32 and 48, we have to write down the highest power of each prime factor and then multiply them. We have two prime factors, 2 and 3. 2 has the highest power of 5, and 3 has 1, so we can write the LCM as ${{2}^{5}}\times 3\Rightarrow 96$.
So, we have got the LCM of 32 and 48 is 96.
Note: This question can be solved in another way. To find HCF of 32 and 48, we have to divide 32 and 48 into factors using the prime factorization method,
$\begin{align}
& 2\left| \!{\underline {\,
32 \,}} \right. \\
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1 \\
\end{align}$
$\begin{align}
& 2\left| \!{\underline {\,
48 \,}} \right. \\
& 2\left| \!{\underline {\,
24 \,}} \right. \\
& 2\left| \!{\underline {\,
12 \,}} \right. \\
& 2\left| \!{\underline {\,
6 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& 1 \\
\end{align}$
From the above, it is clear that $32=2\times 2\times 2\times 2\times 2$ and $48=2\times 2\times 2\times 2\times 3$ .
We get that highest common factors of 32 and 48 are $2\times 2\times 2\times 2\Rightarrow 16$.
So, the H.C.F of 32 and 48 is equal to 16.
We know that the product of two numbers a and b is equal to the product of L.C.M of (a, b) and H.C.F of (a, b).
Product of 32 and 48 \[=32\times \text{48}\Rightarrow \text{1536}\].
Let us assume L.C.M of 32 and 48 is equal to x.
So, we get
\[\Rightarrow 16x=1536\]
Now by using cross multiplication we get,
\[\begin{align}
& \Rightarrow x=\dfrac{1536}{16} \\
& \Rightarrow x=96 \\
\end{align}\]
So, the LCM of (32, 48) is equal to 96.
Complete step-by-step solution -
Before solving the question, we should know the definition of HCF and LCM. HCF is called as the highest common factor. LCM is called least common multiple.
To find HCF of 32 and 48, we have to divide 32 and 48 into factors. We will use the prime factorization method as below,
$\begin{align}
& 2\left| \!{\underline {\,
32 \,}} \right. \\
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1 \\
\end{align}$
$\begin{align}
& 2\left| \!{\underline {\,
48 \,}} \right. \\
& 2\left| \!{\underline {\,
24 \,}} \right. \\
& 2\left| \!{\underline {\,
12 \,}} \right. \\
& 2\left| \!{\underline {\,
6 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& 1 \\
\end{align}$
From the above, it is clear that $32=2\times 2\times 2\times 2\times 2$ and $48=2\times 2\times 2\times 2\times 3$ .
We get that the highest common factors of 32 and 48 are $2\times 2\times 2\times 2\Rightarrow 16$.
So, the greatest common factor of all common factors of 32 and 48 is equal to 16.
So, the H.C.F of 32 and 48 is equal to 16.
To find LCM of 32 and 48, we have to write down the highest power of each prime factor and then multiply them. We have two prime factors, 2 and 3. 2 has the highest power of 5, and 3 has 1, so we can write the LCM as ${{2}^{5}}\times 3\Rightarrow 96$.
So, we have got the LCM of 32 and 48 is 96.
Note: This question can be solved in another way. To find HCF of 32 and 48, we have to divide 32 and 48 into factors using the prime factorization method,
$\begin{align}
& 2\left| \!{\underline {\,
32 \,}} \right. \\
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1 \\
\end{align}$
$\begin{align}
& 2\left| \!{\underline {\,
48 \,}} \right. \\
& 2\left| \!{\underline {\,
24 \,}} \right. \\
& 2\left| \!{\underline {\,
12 \,}} \right. \\
& 2\left| \!{\underline {\,
6 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& 1 \\
\end{align}$
From the above, it is clear that $32=2\times 2\times 2\times 2\times 2$ and $48=2\times 2\times 2\times 2\times 3$ .
We get that highest common factors of 32 and 48 are $2\times 2\times 2\times 2\Rightarrow 16$.
So, the H.C.F of 32 and 48 is equal to 16.
We know that the product of two numbers a and b is equal to the product of L.C.M of (a, b) and H.C.F of (a, b).
Product of 32 and 48 \[=32\times \text{48}\Rightarrow \text{1536}\].
Let us assume L.C.M of 32 and 48 is equal to x.
So, we get
\[\Rightarrow 16x=1536\]
Now by using cross multiplication we get,
\[\begin{align}
& \Rightarrow x=\dfrac{1536}{16} \\
& \Rightarrow x=96 \\
\end{align}\]
So, the LCM of (32, 48) is equal to 96.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE