Answer
Verified
395.1k+ views
Hint: To solve this question we need to know the concept of height and distance which is an application of trigonometry. To solve the problem the first step is to draw a diagram which exhibits the above condition. The next step is to use the trigonometric function to find the value of the height of the tree.
Complete step-by-step solution:
The question ask us to find the value of height of the tree if on walking away $20m$ from the tree in horizontal line the elevation of the top changes from ${{30}^{\circ }}$ to ${{60}^{\circ }}$. We will be solving this question. We need to take the help of the diagram. The diagram is given below. In the diagram $AB$ is the height of the tree, which we are told to find. $DC$is the distance covered in horizontal lines which is $20m$.
After analysing the above diagram we will apply the trigonometric function to find the height. Let us consider the height of the tree which is indicated in the diagram as $AB$ is $h$, and the value of $DC=20m$ ,$\angle ADB={{30}^{\circ }}$ and $\angle ACB={{60}^{\circ }}$.
To solve we will be first considering the $\vartriangle ABC$,
On applying the trigonometric function $\tan $ we get:
$\Rightarrow \tan {{60}^{\circ }}=\sqrt{3}$
Since we know that the trigonometric function$\tan $is the ratio of height and the base. So in this case it is:
$\Rightarrow \tan {{60}^{\circ }}=\dfrac{AB}{BC}$
\[\Rightarrow \sqrt{3}=\dfrac{AB}{BC}\]
\[\Rightarrow \sqrt{3}=\dfrac{h}{BC}\]
On cross multiplying we get:
\[\Rightarrow BC=\dfrac{h}{\sqrt{3}}\]
The next step is to consider the triangle $\vartriangle ABD$
On applying the trigonometric function $\tan $ again we get:
$\Rightarrow \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}$
Since we know that $DB$ could be written as the sum of the two line segments which are $DC$ and $CB$,$DB=DC+CB$ . So in this case it is:
$\Rightarrow \tan {{30}^{\circ }}=\dfrac{h}{20+BC}$
\[\Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{h}{20+BC}\]
On cross multiplying we get:
\[\Rightarrow BC+20=\sqrt{3}h\]
On substituting the value of $BC$ in the above equation we get:
\[\Rightarrow \dfrac{h}{\sqrt{3}}+20=\sqrt{3}h\]
\[\Rightarrow 20=\sqrt{3}h-\dfrac{h}{\sqrt{3}}\]
We will take “h” as common to find its value:
\[\Rightarrow 20=h\left( \sqrt{3}-\dfrac{1}{\sqrt{3}} \right)\]
\[\Rightarrow h\left( 1.154 \right)=20\]
On dividing the R.H.S and the L.H.S function by \[1.154\]we get:
\[\Rightarrow \dfrac{20}{1.154}=h\]
\[\Rightarrow h=17.32\]
$\therefore $ The value of the height of the tree is \[17.32m\].
Note: To solve this type of question we need to analyse the problem and check which trigonometric function will be most applicable to find the value of the unknown. For example, as per the values given to us in the question the trigonometric function which was best was $\tan x$ which has been used in the problem.
Complete step-by-step solution:
The question ask us to find the value of height of the tree if on walking away $20m$ from the tree in horizontal line the elevation of the top changes from ${{30}^{\circ }}$ to ${{60}^{\circ }}$. We will be solving this question. We need to take the help of the diagram. The diagram is given below. In the diagram $AB$ is the height of the tree, which we are told to find. $DC$is the distance covered in horizontal lines which is $20m$.
After analysing the above diagram we will apply the trigonometric function to find the height. Let us consider the height of the tree which is indicated in the diagram as $AB$ is $h$, and the value of $DC=20m$ ,$\angle ADB={{30}^{\circ }}$ and $\angle ACB={{60}^{\circ }}$.
To solve we will be first considering the $\vartriangle ABC$,
On applying the trigonometric function $\tan $ we get:
$\Rightarrow \tan {{60}^{\circ }}=\sqrt{3}$
Since we know that the trigonometric function$\tan $is the ratio of height and the base. So in this case it is:
$\Rightarrow \tan {{60}^{\circ }}=\dfrac{AB}{BC}$
\[\Rightarrow \sqrt{3}=\dfrac{AB}{BC}\]
\[\Rightarrow \sqrt{3}=\dfrac{h}{BC}\]
On cross multiplying we get:
\[\Rightarrow BC=\dfrac{h}{\sqrt{3}}\]
The next step is to consider the triangle $\vartriangle ABD$
On applying the trigonometric function $\tan $ again we get:
$\Rightarrow \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}$
Since we know that $DB$ could be written as the sum of the two line segments which are $DC$ and $CB$,$DB=DC+CB$ . So in this case it is:
$\Rightarrow \tan {{30}^{\circ }}=\dfrac{h}{20+BC}$
\[\Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{h}{20+BC}\]
On cross multiplying we get:
\[\Rightarrow BC+20=\sqrt{3}h\]
On substituting the value of $BC$ in the above equation we get:
\[\Rightarrow \dfrac{h}{\sqrt{3}}+20=\sqrt{3}h\]
\[\Rightarrow 20=\sqrt{3}h-\dfrac{h}{\sqrt{3}}\]
We will take “h” as common to find its value:
\[\Rightarrow 20=h\left( \sqrt{3}-\dfrac{1}{\sqrt{3}} \right)\]
\[\Rightarrow h\left( 1.154 \right)=20\]
On dividing the R.H.S and the L.H.S function by \[1.154\]we get:
\[\Rightarrow \dfrac{20}{1.154}=h\]
\[\Rightarrow h=17.32\]
$\therefore $ The value of the height of the tree is \[17.32m\].
Note: To solve this type of question we need to analyse the problem and check which trigonometric function will be most applicable to find the value of the unknown. For example, as per the values given to us in the question the trigonometric function which was best was $\tan x$ which has been used in the problem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE