Find the incentre of the triangle with vertices \[\left( {7,1} \right),\left( { - 1,5} \right)\]and \[\left( {3{\text{ }} + {\text{ }}2\sqrt 3 ,{\text{ }}3{\text{ }} + {\text{ }}4\sqrt 3 } \right)\]
1) \[\left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
2) \[\left( {1 + \dfrac{2}{{3\sqrt 3 }},1 + \dfrac{4}{{3\sqrt 3 }}} \right)\]
3) (7, 1)
4) None of these
Answer
Verified
389.1k+ views
Hint: Using the vertices first find out the length of the sides of the triangle and proceed. Then we have to determine the type of the triangle by observing the sides of the triangle. Now using the incentre formula for that particular type of triangle the coordinates are found.
Complete step-by-step answer:
Lest us consider the three vertices to be \[A\left( {7,1} \right),B\left( { - 1,5} \right)\], \[C\left( {3{\text{ }} + {\text{ }}2\sqrt 3 ,{\text{ }}3{\text{ }} + {\text{ }}4\sqrt 3 } \right)\] which forms the triangle \[\Delta ABC\] .
So, to find the length of the sides of the triangle distance formula is used and solve it
\[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} - {{\left( {{y_2} - {y_1}} \right)}^2}} \]
So, the length of the side AB we get,
\[ \Rightarrow AB = \sqrt {{{\left( {\left( { - 1} \right) - 7} \right)}^2} - {{\left( {5 - 1} \right)}^2}} \]
\[ \Rightarrow AB = \sqrt {{8^2} + {4^2}} \]
\[ \Rightarrow AB = \sqrt {80} \]
\[ \Rightarrow AB = 4\sqrt 5 \]
Now, the length of the side BC we get,
\[ \Rightarrow BC = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - \left( { - 1} \right)} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow Bc = 4\sqrt 5 \]
Now, the length of the side CA we get,
\[ \Rightarrow CA = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - 7} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow CA = 4\sqrt 5 \]
Since AB = BC = CA = \[4\sqrt 5 \]
Hence, we can say that it is an equilateral triangle. Since \[\Delta ABC\] is an equilateral triangle. The incentre is nothing but equal to the centroid of \[\Delta ABC\] .
So, the coordinates of the incentre = coordinates of centroid
Now, coordinates of centroid can be written using the formula
\[ \Rightarrow \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{7 + \left( { - 1} \right) + \left( {3 + 2\sqrt 3 } \right)}}{3},\dfrac{{1 + 5 + \left( {3 + 4\sqrt 3 } \right)}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{9 + 2\sqrt 3 }}{3},\dfrac{{9 + 4\sqrt 3 }}{3}} \right)\]
\[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Thus, coordinates of incentre are: \[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Hence option (1) is the correct answer to this question.
So, the correct answer is “Option 1”.
Note: When we have to solve this type question, first calculate the distance of the side of the triangle and apply the formula of incentre with respect to the triangle that formed. Alternate way to find the incentre is using the formula-
\[\left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)\]
Where,
Length of side AB is a
Length of side BC is b
Length of side CA is c
Complete step-by-step answer:
Lest us consider the three vertices to be \[A\left( {7,1} \right),B\left( { - 1,5} \right)\], \[C\left( {3{\text{ }} + {\text{ }}2\sqrt 3 ,{\text{ }}3{\text{ }} + {\text{ }}4\sqrt 3 } \right)\] which forms the triangle \[\Delta ABC\] .
So, to find the length of the sides of the triangle distance formula is used and solve it
\[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} - {{\left( {{y_2} - {y_1}} \right)}^2}} \]
So, the length of the side AB we get,
\[ \Rightarrow AB = \sqrt {{{\left( {\left( { - 1} \right) - 7} \right)}^2} - {{\left( {5 - 1} \right)}^2}} \]
\[ \Rightarrow AB = \sqrt {{8^2} + {4^2}} \]
\[ \Rightarrow AB = \sqrt {80} \]
\[ \Rightarrow AB = 4\sqrt 5 \]
Now, the length of the side BC we get,
\[ \Rightarrow BC = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - \left( { - 1} \right)} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow Bc = 4\sqrt 5 \]
Now, the length of the side CA we get,
\[ \Rightarrow CA = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - 7} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow CA = 4\sqrt 5 \]
Since AB = BC = CA = \[4\sqrt 5 \]
Hence, we can say that it is an equilateral triangle. Since \[\Delta ABC\] is an equilateral triangle. The incentre is nothing but equal to the centroid of \[\Delta ABC\] .
So, the coordinates of the incentre = coordinates of centroid
Now, coordinates of centroid can be written using the formula
\[ \Rightarrow \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{7 + \left( { - 1} \right) + \left( {3 + 2\sqrt 3 } \right)}}{3},\dfrac{{1 + 5 + \left( {3 + 4\sqrt 3 } \right)}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{9 + 2\sqrt 3 }}{3},\dfrac{{9 + 4\sqrt 3 }}{3}} \right)\]
\[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Thus, coordinates of incentre are: \[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Hence option (1) is the correct answer to this question.
So, the correct answer is “Option 1”.
Note: When we have to solve this type question, first calculate the distance of the side of the triangle and apply the formula of incentre with respect to the triangle that formed. Alternate way to find the incentre is using the formula-
\[\left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)\]
Where,
Length of side AB is a
Length of side BC is b
Length of side CA is c
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE