Answer
Verified
497.1k+ views
Hint: Simplify the expression within the integral sign and use the following results:
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE