
Find the integral;
$\int{\sec x\left( \sec x+\tan x \right)dx}$
Answer
619.8k+ views
Hint: Simplify the expression within the integral sign and use the following results:
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

