Answer
Verified
431.1k+ views
Hint: The given integral $\sin \left( {{x}^{\dfrac{1}{2}}} \right)dx$ has \[{{x}^{\dfrac{1}{2}}}\] or \[\sqrt{x}\] as an argument to the sine function, which is making it complex. So we will simplify the integral by substituting \[{{x}^{\dfrac{1}{2}}}\] equal to some variable, say $t$. On making this substitution our integral will become simplified. Then we have to use the by-parts method to solve the integral obtained. Finally, we have to back substitute $t$ to \[{{x}^{\dfrac{1}{2}}}\] to get the final integral.
Complete step-by-step answer:
The integral given in the above question is
\[I=\int{\sin \left( {{x}^{\dfrac{1}{2}}} \right)dx}..........(i)\]
As can be seen above, the square root function \[{{x}^{\dfrac{1}{2}}}\] as an argument to the sine function is making the integral complex. So we first have to simplify the above integral by removing the square root function by substituting it to some variable $t$, that is,
$\Rightarrow t={{x}^{\dfrac{1}{2}}}.........(ii)$
Differentiating both sides with respect to $x$, we have
$\Rightarrow \dfrac{dt}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}$
Now, we know that the differentiation of ${{x}^{n}}$ is equal to $n{{x}^{n-1}}$. So the above equation becomes
\[\begin{align}
& \Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}} \\
\end{align}\]
Substituting (ii) in the above equation, we get
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2t}\]
By cross multiplying, we can write
\[\begin{align}
& \Rightarrow 2tdt=dx \\
& \Rightarrow dx=2tdt.........(iii) \\
\end{align}\]
Substituting (ii) and (iii) in (i), we get
$\begin{align}
& \Rightarrow I=\int{\sin t\left( 2tdt \right)} \\
& \Rightarrow I=\int{2t\sin tdt}......(iv) \\
\end{align}$
Now, we will use the by parts method to solve the above integral. From the by parts method, we know that
$\int{f\left( t \right)g\left( t \right)dt}=f\left( t \right)\int{g\left( t \right)dt}-\int{f'\left( t \right)\left( \int{g\left( t \right)dt} \right)dt}$
Choosing $f\left( t \right)=2t$ and $g\left( t \right)=\sin t$, the integral in (iv) can be written as
\[\begin{align}
& \Rightarrow I=2t\int{\sin tdt}-\int{\dfrac{d\left( 2t \right)}{dt}\left( \int{\sin tdt} \right)dt} \\
& \Rightarrow I=2t\int{\sin tdt}-\int{2\left( \int{\sin tdt} \right)dt} \\
\end{align}\]
We know that \[\int{\sin tdt}=-\cos t\]. Putting it in the above integral, we get
\[\begin{align}
& \Rightarrow I=2t\left( -\cos t \right)-\int{2\left( -\cos t \right)dt} \\
& \Rightarrow I=-2t\cos t+2\int{\cos tdt} \\
\end{align}\]
Now, we know that \[\int{\cos tdt}=\sin t\]. Putting it above, we get
\[\begin{align}
& \Rightarrow I=-2t\cos t+2\sin t+C \\
& \Rightarrow I=2\sin t-2t\cos t+C \\
\end{align}\]
Finally, substituting (ii) in the above equation, we get
\[\begin{align}
& \Rightarrow I=2\sin {{x}^{\dfrac{1}{2}}}-2{{x}^{\dfrac{1}{2}}}\cos {{x}^{\dfrac{1}{2}}}+C \\
& \Rightarrow I=2\left( \sin {{x}^{\dfrac{1}{2}}}-{{x}^{\dfrac{1}{2}}}\cos {{x}^{\dfrac{1}{2}}} \right)+C \\
\end{align}\]
Hence, the integral of $\sin \left( {{x}^{\dfrac{1}{2}}} \right)dx$ is equal to \[2\left( \sin {{x}^{\dfrac{1}{2}}}-{{x}^{\dfrac{1}{2}}}\cos {{x}^{\dfrac{1}{2}}} \right)+C\].
Note: Do not forget to add a constant after the integration since we have solved an indefinite integral. Also, while substituting ${{x}^{\dfrac{1}{2}}}=t$, do not replace $dx$ by $dt$ directly. We have to take the differential on both sides of the equation ${{x}^{\dfrac{1}{2}}}=t$ for obtaining $dt$ in terms of $dx$.
Complete step-by-step answer:
The integral given in the above question is
\[I=\int{\sin \left( {{x}^{\dfrac{1}{2}}} \right)dx}..........(i)\]
As can be seen above, the square root function \[{{x}^{\dfrac{1}{2}}}\] as an argument to the sine function is making the integral complex. So we first have to simplify the above integral by removing the square root function by substituting it to some variable $t$, that is,
$\Rightarrow t={{x}^{\dfrac{1}{2}}}.........(ii)$
Differentiating both sides with respect to $x$, we have
$\Rightarrow \dfrac{dt}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}$
Now, we know that the differentiation of ${{x}^{n}}$ is equal to $n{{x}^{n-1}}$. So the above equation becomes
\[\begin{align}
& \Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}} \\
\end{align}\]
Substituting (ii) in the above equation, we get
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{2t}\]
By cross multiplying, we can write
\[\begin{align}
& \Rightarrow 2tdt=dx \\
& \Rightarrow dx=2tdt.........(iii) \\
\end{align}\]
Substituting (ii) and (iii) in (i), we get
$\begin{align}
& \Rightarrow I=\int{\sin t\left( 2tdt \right)} \\
& \Rightarrow I=\int{2t\sin tdt}......(iv) \\
\end{align}$
Now, we will use the by parts method to solve the above integral. From the by parts method, we know that
$\int{f\left( t \right)g\left( t \right)dt}=f\left( t \right)\int{g\left( t \right)dt}-\int{f'\left( t \right)\left( \int{g\left( t \right)dt} \right)dt}$
Choosing $f\left( t \right)=2t$ and $g\left( t \right)=\sin t$, the integral in (iv) can be written as
\[\begin{align}
& \Rightarrow I=2t\int{\sin tdt}-\int{\dfrac{d\left( 2t \right)}{dt}\left( \int{\sin tdt} \right)dt} \\
& \Rightarrow I=2t\int{\sin tdt}-\int{2\left( \int{\sin tdt} \right)dt} \\
\end{align}\]
We know that \[\int{\sin tdt}=-\cos t\]. Putting it in the above integral, we get
\[\begin{align}
& \Rightarrow I=2t\left( -\cos t \right)-\int{2\left( -\cos t \right)dt} \\
& \Rightarrow I=-2t\cos t+2\int{\cos tdt} \\
\end{align}\]
Now, we know that \[\int{\cos tdt}=\sin t\]. Putting it above, we get
\[\begin{align}
& \Rightarrow I=-2t\cos t+2\sin t+C \\
& \Rightarrow I=2\sin t-2t\cos t+C \\
\end{align}\]
Finally, substituting (ii) in the above equation, we get
\[\begin{align}
& \Rightarrow I=2\sin {{x}^{\dfrac{1}{2}}}-2{{x}^{\dfrac{1}{2}}}\cos {{x}^{\dfrac{1}{2}}}+C \\
& \Rightarrow I=2\left( \sin {{x}^{\dfrac{1}{2}}}-{{x}^{\dfrac{1}{2}}}\cos {{x}^{\dfrac{1}{2}}} \right)+C \\
\end{align}\]
Hence, the integral of $\sin \left( {{x}^{\dfrac{1}{2}}} \right)dx$ is equal to \[2\left( \sin {{x}^{\dfrac{1}{2}}}-{{x}^{\dfrac{1}{2}}}\cos {{x}^{\dfrac{1}{2}}} \right)+C\].
Note: Do not forget to add a constant after the integration since we have solved an indefinite integral. Also, while substituting ${{x}^{\dfrac{1}{2}}}=t$, do not replace $dx$ by $dt$ directly. We have to take the differential on both sides of the equation ${{x}^{\dfrac{1}{2}}}=t$ for obtaining $dt$ in terms of $dx$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE