Answer
Verified
432.3k+ views
Hint:In the given question, we have to find the intervals in which a given function is increasing and decreasing by using the first derivative. The first derivative is defined as the differentiation of y with respect to x. A function is said to be increasing in a given interval if the value of y increases as we increase the value of x and the function is said to be decreasing if the value of y decreases on increasing the value of x. Using this information, we can find the correct answer.
Complete step by step answer:
We are given that $y = {x^2} - 2x - 8$
The first derivative of this function will be –
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}({x^2} - 2x - 8) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d({x^2})}}{{dx}} + \dfrac{{d( - 2x)}}{{dx}} + \dfrac{{d( -
8)}}{{dx}} \\
\]
We know that the differentiation of the product of a constant and a function is equal to the product of the constant and the derivative of the function, the derivative of ${x^n}$ is $n{x^{n - 1}}$ and the the derivative of a constant is zero. So,
$\dfrac{{dy}}{{dx}} = 2x - 2$
Now, in the increasing interval, the slope is positive, so –
$
\dfrac{{dy}}{{dx}} > 0 \\
\Rightarrow 2x - 2 > 0 \\
\Rightarrow 2x > 2 \\
\Rightarrow x > 1 \\
$
And in the decreasing interval, the slope is negative, so –
$
\dfrac{{dy}}{{dx}} < 0 \\
\Rightarrow 2x - 2 < 0 \\
\Rightarrow 2x < 2 \\
\Rightarrow x < 1 \\
$
Hence, the function $y = {x^2} - 2x - 8$ is increasing in the interval $(1,\infty )$ and decreasing in the interval $( - \infty ,1)$ .
Note: The first derivative of a function represents its slope at any point. Thus, in the increasing interval, the function will have a curve going upwards, that is, the slope of the function in that interval will be positive, and in the decreasing interval the function will have a curve going downwards, that is, the slope of the function in that interval will be negative.
Complete step by step answer:
We are given that $y = {x^2} - 2x - 8$
The first derivative of this function will be –
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}({x^2} - 2x - 8) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d({x^2})}}{{dx}} + \dfrac{{d( - 2x)}}{{dx}} + \dfrac{{d( -
8)}}{{dx}} \\
\]
We know that the differentiation of the product of a constant and a function is equal to the product of the constant and the derivative of the function, the derivative of ${x^n}$ is $n{x^{n - 1}}$ and the the derivative of a constant is zero. So,
$\dfrac{{dy}}{{dx}} = 2x - 2$
Now, in the increasing interval, the slope is positive, so –
$
\dfrac{{dy}}{{dx}} > 0 \\
\Rightarrow 2x - 2 > 0 \\
\Rightarrow 2x > 2 \\
\Rightarrow x > 1 \\
$
And in the decreasing interval, the slope is negative, so –
$
\dfrac{{dy}}{{dx}} < 0 \\
\Rightarrow 2x - 2 < 0 \\
\Rightarrow 2x < 2 \\
\Rightarrow x < 1 \\
$
Hence, the function $y = {x^2} - 2x - 8$ is increasing in the interval $(1,\infty )$ and decreasing in the interval $( - \infty ,1)$ .
Note: The first derivative of a function represents its slope at any point. Thus, in the increasing interval, the function will have a curve going upwards, that is, the slope of the function in that interval will be positive, and in the decreasing interval the function will have a curve going downwards, that is, the slope of the function in that interval will be negative.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers