Answer
Verified
498.3k+ views
Hint: In this type of question where we have to find the inverse by elementary transformation method the important thing is to convert the given matrix into an identity matrix. We can use the elementary row or column transformation to convert the given matrix into an identity matrix.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE