Answer
Verified
396.9k+ views
Hint: To find the inverse of $f\left( x \right)=-{{x}^{2}}+2$ , we have to replace $f\left( x \right)$ with y. Then, we have to solve for x. We will ignore the negative value since $x\ge 0$ . Now, we have to replace x with y. Finally, we have to replace y with ${{f}^{-1}}\left( x \right)$ .
Complete step by step answer:
We have to find the inverse of the quadratic function $f\left( x \right)=-{{x}^{2}}+2$ . Firstly, we have to replace $f\left( x \right)$ with y.
$\Rightarrow y=-{{x}^{2}}+2$
Let us solve for x. We have to take 2 to the LHS.
$\Rightarrow y-2=-{{x}^{2}}$
Now, we have to take the negative sign to the LHS.
$\begin{align}
& \Rightarrow -\left( y-2 \right)={{x}^{2}} \\
& \Rightarrow -y+2={{x}^{2}} \\
& \Rightarrow {{x}^{2}}=2-y \\
\end{align}$
Let us take square roots on both sides.
$\begin{align}
& \Rightarrow x=\pm \sqrt{2-y} \\
& \Rightarrow x=\sqrt{2-y},-\sqrt{2-y} \\
\end{align}$
We are given that $x\ge 0$ . Therefore, we will ignore the negative value.
$\Rightarrow x=\sqrt{2-y}$
Now, we have to replace x with y.
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Therefore, the inverse of $f\left( x \right)=-{{x}^{2}}+2$ is $\sqrt{2-x}$ .
So, the correct answer is “Option d”.
Note: Students must be thorough in solving algebraic equations and the rules involved in it. They should never miss to solve for x in step 2. If so, they have to solve for y in the second last step. After step 1, we will obtain
$\Rightarrow y=-{{x}^{2}}+2$
Then, we have to replace x with y.
$\Rightarrow x=-{{y}^{2}}+2,y\ge 0$
Now, we have to solve for y.
$\begin{align}
& \Rightarrow x-2=-{{y}^{2}} \\
& \Rightarrow -x+2={{y}^{2}} \\
& \Rightarrow {{y}^{2}}=2-x \\
\end{align}$
Let us take square roots on both sides.
$\Rightarrow y=\pm \sqrt{2-x}$
We have to ignore the negative value since $y\ge 0$ .
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Complete step by step answer:
We have to find the inverse of the quadratic function $f\left( x \right)=-{{x}^{2}}+2$ . Firstly, we have to replace $f\left( x \right)$ with y.
$\Rightarrow y=-{{x}^{2}}+2$
Let us solve for x. We have to take 2 to the LHS.
$\Rightarrow y-2=-{{x}^{2}}$
Now, we have to take the negative sign to the LHS.
$\begin{align}
& \Rightarrow -\left( y-2 \right)={{x}^{2}} \\
& \Rightarrow -y+2={{x}^{2}} \\
& \Rightarrow {{x}^{2}}=2-y \\
\end{align}$
Let us take square roots on both sides.
$\begin{align}
& \Rightarrow x=\pm \sqrt{2-y} \\
& \Rightarrow x=\sqrt{2-y},-\sqrt{2-y} \\
\end{align}$
We are given that $x\ge 0$ . Therefore, we will ignore the negative value.
$\Rightarrow x=\sqrt{2-y}$
Now, we have to replace x with y.
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Therefore, the inverse of $f\left( x \right)=-{{x}^{2}}+2$ is $\sqrt{2-x}$ .
So, the correct answer is “Option d”.
Note: Students must be thorough in solving algebraic equations and the rules involved in it. They should never miss to solve for x in step 2. If so, they have to solve for y in the second last step. After step 1, we will obtain
$\Rightarrow y=-{{x}^{2}}+2$
Then, we have to replace x with y.
$\Rightarrow x=-{{y}^{2}}+2,y\ge 0$
Now, we have to solve for y.
$\begin{align}
& \Rightarrow x-2=-{{y}^{2}} \\
& \Rightarrow -x+2={{y}^{2}} \\
& \Rightarrow {{y}^{2}}=2-x \\
\end{align}$
Let us take square roots on both sides.
$\Rightarrow y=\pm \sqrt{2-x}$
We have to ignore the negative value since $y\ge 0$ .
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE