Answer
Verified
398.3k+ views
Hint: In this question first factorize the number and calculate the value of L.C.M and H.C.F respectively by using the concept that the H.C.F of the numbers is the product of common factors, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
As we know that the H.C.F of the numbers is the product of common factors so, first factorize the numbers we have,
Factors of 26 is
$ \Rightarrow 26 = 1 \times 2 \times 13$
We cannot further factorize as 13 is a prime number.
Factors of 91 is
$ \Rightarrow 91 = 1 \times 7 \times 13$
We cannot further factorize as 13 is a prime number.
So the common factors of 26 and 91 are $\left( {1 \times 13} \right) = 13$
So the H.C.F of 26 and 91 is 13.
Now find out the L.C.M of 26 and 91,
Least common multiple of two numbers is to first list the prime factors of each number. Then multiply each factor the greatest number of times it occurs in either number. If the same factor occurs more than once in both numbers, you multiply the factor the greatest number of times it occurs.
So, the L.C.M of 26 and 91 is
$ \Rightarrow L.C.M = 1 \times 2 \times 7 \times 13 = 182$
So the product of L.C.M and H.C.F is $\left( {182 \times 13} \right) = 2366$.
And the product of two numbers is $\left( {26 \times 91} \right) = 2366$.
So, we verified that L.C.M $ \times $ H.C.F = product of two numbers.
So, this is the required answer.
Note: Whenever we face such types of questions the key concept is factorization so factorize the number and calculate L.C.M and H.C.F of the numbers respectively as above, then multiply L.C.M and H.C.F together and check that the product of two numbers is equal to the product of L.C.M and H.C.F if yes then it is verified.
Complete step-by-step answer:
As we know that the H.C.F of the numbers is the product of common factors so, first factorize the numbers we have,
Factors of 26 is
$ \Rightarrow 26 = 1 \times 2 \times 13$
We cannot further factorize as 13 is a prime number.
Factors of 91 is
$ \Rightarrow 91 = 1 \times 7 \times 13$
We cannot further factorize as 13 is a prime number.
So the common factors of 26 and 91 are $\left( {1 \times 13} \right) = 13$
So the H.C.F of 26 and 91 is 13.
Now find out the L.C.M of 26 and 91,
Least common multiple of two numbers is to first list the prime factors of each number. Then multiply each factor the greatest number of times it occurs in either number. If the same factor occurs more than once in both numbers, you multiply the factor the greatest number of times it occurs.
So, the L.C.M of 26 and 91 is
$ \Rightarrow L.C.M = 1 \times 2 \times 7 \times 13 = 182$
So the product of L.C.M and H.C.F is $\left( {182 \times 13} \right) = 2366$.
And the product of two numbers is $\left( {26 \times 91} \right) = 2366$.
So, we verified that L.C.M $ \times $ H.C.F = product of two numbers.
So, this is the required answer.
Note: Whenever we face such types of questions the key concept is factorization so factorize the number and calculate L.C.M and H.C.F of the numbers respectively as above, then multiply L.C.M and H.C.F together and check that the product of two numbers is equal to the product of L.C.M and H.C.F if yes then it is verified.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE