Find the LCM of 46, 72, and 84 by prime factor method.
Answer
Verified
480.3k+ views
Hint: Find the prime factors of 46, 72, and 84. Multiply the highest powers of each prime factor. The product thus obtained is the LCM.
Complete step by step solution:
We are given three numbers 46, 72, and 84.
We are asked to compute their LCM. LCM stands for least common multiple
And the method to be used is the prime factor method.
In this method we need to prime factorize each of the given numbers.
Then we multiply all the prime factors with the highest power.
Consider the prime factorizations of 46, 72, and 84.
Using the above computations, we will express the given numbers as products of their prime factors.
$
46 = 2 \times 23 \\
72 = 2 \times 2 \times 2 \times 3 \times 3 = {2^3} \times {3^2} \\
84 = 2 \times 2 \times 3 \times 7 = {2^2} \times 3 \times 7 \\
$
The prime factors are 2, 3, 7, and 23.
Highest power of 2$ = {2^3}$
Highest power of 3$ = {3^2}$
Highest power of 7$ = 7$
Highest power of 23$ = 23$
Therefore, LCM of 46, 72, and 84
$
= {2^3} \times {3^2} \times 7 \times 23 \\
= 11,592 \\
$
Hence the required LCM is 11,592.
Note: As the name suggests, while using the prime factor method, the number must be expressed as a product of its prime factors.
This is the difference between the prime factor method for LCM and the conventional method for finding LCM where we take into consideration the multiples.
Complete step by step solution:
We are given three numbers 46, 72, and 84.
We are asked to compute their LCM. LCM stands for least common multiple
And the method to be used is the prime factor method.
In this method we need to prime factorize each of the given numbers.
Then we multiply all the prime factors with the highest power.
Consider the prime factorizations of 46, 72, and 84.
Using the above computations, we will express the given numbers as products of their prime factors.
$
46 = 2 \times 23 \\
72 = 2 \times 2 \times 2 \times 3 \times 3 = {2^3} \times {3^2} \\
84 = 2 \times 2 \times 3 \times 7 = {2^2} \times 3 \times 7 \\
$
The prime factors are 2, 3, 7, and 23.
Highest power of 2$ = {2^3}$
Highest power of 3$ = {3^2}$
Highest power of 7$ = 7$
Highest power of 23$ = 23$
Therefore, LCM of 46, 72, and 84
$
= {2^3} \times {3^2} \times 7 \times 23 \\
= 11,592 \\
$
Hence the required LCM is 11,592.
Note: As the name suggests, while using the prime factor method, the number must be expressed as a product of its prime factors.
This is the difference between the prime factor method for LCM and the conventional method for finding LCM where we take into consideration the multiples.
Recently Updated Pages
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
Complete the letter given below written to your Principal class null english null
Express the following as a fraction and simplify a class 7 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
Chandbardai was a state poet in the court of which class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science