Find the length of the hypotenuse of a right triangle with legs of lengths 5 and 12 ?
Answer
Verified
440.7k+ views
Hint: Pythagoras theorem: For a right angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Also we can find the hypotenuse of the triangle by the equation:
\[c = \sqrt {{a^2} + {b^2}} \]
So by using the above equation and substituting the values $a\;{\text{and}}\;b$ we can find the value of the hypotenuse.
Complete step by step solution:
Given
Legs of lengths 5 and 12
\[ \Rightarrow a = 5\;{\text{and}}\;b = 12..........................\left( i \right)\]
Now using this value we can draw a right angled triangle as below:
Now we need to find the hypotenuse such that we need to find the value of $c$:
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Now in order to find the value of$c$we need to take root of the LHS:
\[c = \sqrt {{a^2} + {b^2}} .............................\left( {ii} \right)\]
Now we have the values: \[a = 5\;{\text{and}}\;b = 12\]
Substituting the above values in (ii) we can write:
\[
c = \sqrt {{a^2} + {b^2}} \\
\Rightarrow c = \sqrt {{{\left( 5 \right)}^2} + {{\left( {12} \right)}^2}} \\
\Rightarrow c = \sqrt {25 + 144} \\
\Rightarrow c = \sqrt {169} \\
\Rightarrow c = 13 \\
\]
Therefore length of the hypotenuse of a right triangle with legs of lengths \[5\;{\text{and}}\;{\text{1}}2\;{\text{is}}\;13\].
Additional Information:
There are two types of Right angled triangle:
1. Isosceles Right angled triangle.
2. Scalene Right angled triangle.
Also in a right angled triangle the sum of the three angles is ${180^ \circ }$.
Note: Here care must be taken while taking the roots of different numbers. One of the most useful and widely used shapes in mathematics is the right angled triangle. It’s not only used in the Pythagoras theorem but also has a large area of development in the field of trigonometry consisting of sine, cosine, tangent etc.
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Also we can find the hypotenuse of the triangle by the equation:
\[c = \sqrt {{a^2} + {b^2}} \]
So by using the above equation and substituting the values $a\;{\text{and}}\;b$ we can find the value of the hypotenuse.
Complete step by step solution:
Given
Legs of lengths 5 and 12
\[ \Rightarrow a = 5\;{\text{and}}\;b = 12..........................\left( i \right)\]
Now using this value we can draw a right angled triangle as below:
Now we need to find the hypotenuse such that we need to find the value of $c$:
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Now in order to find the value of$c$we need to take root of the LHS:
\[c = \sqrt {{a^2} + {b^2}} .............................\left( {ii} \right)\]
Now we have the values: \[a = 5\;{\text{and}}\;b = 12\]
Substituting the above values in (ii) we can write:
\[
c = \sqrt {{a^2} + {b^2}} \\
\Rightarrow c = \sqrt {{{\left( 5 \right)}^2} + {{\left( {12} \right)}^2}} \\
\Rightarrow c = \sqrt {25 + 144} \\
\Rightarrow c = \sqrt {169} \\
\Rightarrow c = 13 \\
\]
Therefore length of the hypotenuse of a right triangle with legs of lengths \[5\;{\text{and}}\;{\text{1}}2\;{\text{is}}\;13\].
Additional Information:
There are two types of Right angled triangle:
1. Isosceles Right angled triangle.
2. Scalene Right angled triangle.
Also in a right angled triangle the sum of the three angles is ${180^ \circ }$.
Note: Here care must be taken while taking the roots of different numbers. One of the most useful and widely used shapes in mathematics is the right angled triangle. It’s not only used in the Pythagoras theorem but also has a large area of development in the field of trigonometry consisting of sine, cosine, tangent etc.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE