Answer
Verified
497.4k+ views
Hint: First convert the given equation in the $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ form. Then use the formulae ${{e}^{2}}=1-\dfrac{{{a}^{2}}}{{{b}^{2}}}$, \[F\left( 0,\pm be \right)\] and \[L.R.=\dfrac{2{{a}^{2}}}{b}\] to find the values of eccentricity, foci and latus rectum respectively.
Complete step-by-step solution -
To solve the above problem we will write the given equation first,
$5{{x}^{2}}+4{{y}^{2}}=1$
As the given equation is of ellipse therefore we have to convert the equation it its standard form which is shown below,
Standard Form of Ellipse:
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$
Therefore we can write given equations by shifting the constants in the denominator as shown below,
$\dfrac{{{x}^{2}}}{\dfrac{1}{5}}+\dfrac{{{y}^{2}}}{\dfrac{1}{4}}=1$
Now the denominators can be expressed in terms of square as,
$\therefore \dfrac{{{x}^{2}}}{{{\left( \dfrac{1}{\sqrt{5}} \right)}^{2}}}+\dfrac{{{y}^{2}}}{{{\left( \dfrac{1}{2} \right)}^{2}}}=1$
Now if we compare the above equation with standard form we will get,
$a=\dfrac{1}{\sqrt{5}}$, and $b=\dfrac{1}{2}$ ……………………………………………… (1)
As, b > a therefore the ellipse is vertical and for well understanding we have shown it below,
As shown in figure A and B are the two foci of the ellipse.
As the ellipse is vertical therefore we have to use all the formula of Vertical ellipse.
Now we will find the required terminologies one by one,
Eccentricity:
The formula for eccentricity of vertical ellipse is given by,
${{e}^{2}}=1-\dfrac{{{a}^{2}}}{{{b}^{2}}}$
Now if we put the values of equation (1) in the above formula we will get,
$\therefore {{e}^{2}}=1-\dfrac{{{\left( \dfrac{1}{\sqrt{5}} \right)}^{2}}}{{{\left( \dfrac{1}{2} \right)}^{2}}}$
$\therefore {{e}^{2}}=1-\dfrac{\dfrac{1}{5}}{\dfrac{1}{4}}$
$\therefore {{e}^{2}}=1-\dfrac{1}{5}\times \dfrac{4}{1}$
$\therefore {{e}^{2}}=1-\dfrac{4}{5}$
$\therefore {{e}^{2}}=\dfrac{5-4}{5}$
\[\therefore {{e}^{2}}=\dfrac{1}{5}\]
Taking square root on both sides we will get,
\[\therefore e=\dfrac{1}{\sqrt{5}}\] ……………………………………………… (2)
Foci:
As ellipse has two foci namely A and B we will write the formulae of both.
Foci of vertical ellipse is given by,
A (0, be) And B (0,-be)
If we put the values of equation (1) and equation (2) in above points we will get,
\[\therefore \] \[A\left( 0,\dfrac{1}{2}\times \dfrac{1}{\sqrt{5}} \right)\] And \[B\left( 0,-\dfrac{1}{2}\times \dfrac{1}{\sqrt{5}} \right)\]
\[\therefore A\left( 0,\dfrac{1}{2\sqrt{5}} \right)\] And \[B\left( 0,-\dfrac{1}{2\sqrt{5}} \right)\]
Therefore Foci of ellipse is \[\left( 0,\pm \dfrac{1}{2\sqrt{5}} \right)\]
Latus Rectum:
Formula for latus rectum of vertical ellipse is given by,
\[L.R.=\dfrac{2{{a}^{2}}}{b}\]
If we put the values of equation (1) in the above equation we will get,
\[\therefore L.R.=\dfrac{2{{\left( \dfrac{1}{\sqrt{5}} \right)}^{2}}}{\left( \dfrac{1}{2} \right)}\]
\[\therefore L.R.=\dfrac{2\times \dfrac{1}{5}}{\left( \dfrac{1}{2} \right)}\]
\[\therefore L.R.=2\times \dfrac{1}{5}\times \dfrac{2}{1}\]
\[\therefore L.R.=\dfrac{4}{5}\]
Therefore the value of Latus Rectum is \[\dfrac{4}{5}\].
Note: Students generally forgot to convert the equation in the standard form and consider the values of ‘a’ and ‘b’ directly as 5 and 4 respectively in this case i.e. $5{{x}^{2}}+4{{y}^{2}}=1$ and the whole answer becomes wrong therefore always convert the equation into the standard form.
Complete step-by-step solution -
To solve the above problem we will write the given equation first,
$5{{x}^{2}}+4{{y}^{2}}=1$
As the given equation is of ellipse therefore we have to convert the equation it its standard form which is shown below,
Standard Form of Ellipse:
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$
Therefore we can write given equations by shifting the constants in the denominator as shown below,
$\dfrac{{{x}^{2}}}{\dfrac{1}{5}}+\dfrac{{{y}^{2}}}{\dfrac{1}{4}}=1$
Now the denominators can be expressed in terms of square as,
$\therefore \dfrac{{{x}^{2}}}{{{\left( \dfrac{1}{\sqrt{5}} \right)}^{2}}}+\dfrac{{{y}^{2}}}{{{\left( \dfrac{1}{2} \right)}^{2}}}=1$
Now if we compare the above equation with standard form we will get,
$a=\dfrac{1}{\sqrt{5}}$, and $b=\dfrac{1}{2}$ ……………………………………………… (1)
As, b > a therefore the ellipse is vertical and for well understanding we have shown it below,
As shown in figure A and B are the two foci of the ellipse.
As the ellipse is vertical therefore we have to use all the formula of Vertical ellipse.
Now we will find the required terminologies one by one,
Eccentricity:
The formula for eccentricity of vertical ellipse is given by,
${{e}^{2}}=1-\dfrac{{{a}^{2}}}{{{b}^{2}}}$
Now if we put the values of equation (1) in the above formula we will get,
$\therefore {{e}^{2}}=1-\dfrac{{{\left( \dfrac{1}{\sqrt{5}} \right)}^{2}}}{{{\left( \dfrac{1}{2} \right)}^{2}}}$
$\therefore {{e}^{2}}=1-\dfrac{\dfrac{1}{5}}{\dfrac{1}{4}}$
$\therefore {{e}^{2}}=1-\dfrac{1}{5}\times \dfrac{4}{1}$
$\therefore {{e}^{2}}=1-\dfrac{4}{5}$
$\therefore {{e}^{2}}=\dfrac{5-4}{5}$
\[\therefore {{e}^{2}}=\dfrac{1}{5}\]
Taking square root on both sides we will get,
\[\therefore e=\dfrac{1}{\sqrt{5}}\] ……………………………………………… (2)
Foci:
As ellipse has two foci namely A and B we will write the formulae of both.
Foci of vertical ellipse is given by,
A (0, be) And B (0,-be)
If we put the values of equation (1) and equation (2) in above points we will get,
\[\therefore \] \[A\left( 0,\dfrac{1}{2}\times \dfrac{1}{\sqrt{5}} \right)\] And \[B\left( 0,-\dfrac{1}{2}\times \dfrac{1}{\sqrt{5}} \right)\]
\[\therefore A\left( 0,\dfrac{1}{2\sqrt{5}} \right)\] And \[B\left( 0,-\dfrac{1}{2\sqrt{5}} \right)\]
Therefore Foci of ellipse is \[\left( 0,\pm \dfrac{1}{2\sqrt{5}} \right)\]
Latus Rectum:
Formula for latus rectum of vertical ellipse is given by,
\[L.R.=\dfrac{2{{a}^{2}}}{b}\]
If we put the values of equation (1) in the above equation we will get,
\[\therefore L.R.=\dfrac{2{{\left( \dfrac{1}{\sqrt{5}} \right)}^{2}}}{\left( \dfrac{1}{2} \right)}\]
\[\therefore L.R.=\dfrac{2\times \dfrac{1}{5}}{\left( \dfrac{1}{2} \right)}\]
\[\therefore L.R.=2\times \dfrac{1}{5}\times \dfrac{2}{1}\]
\[\therefore L.R.=\dfrac{4}{5}\]
Therefore the value of Latus Rectum is \[\dfrac{4}{5}\].
Note: Students generally forgot to convert the equation in the standard form and consider the values of ‘a’ and ‘b’ directly as 5 and 4 respectively in this case i.e. $5{{x}^{2}}+4{{y}^{2}}=1$ and the whole answer becomes wrong therefore always convert the equation into the standard form.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE