Answer
Verified
497.7k+ views
Hint: Draw a rough figure of the tangent meeting the circle. The tangent to a circle is always perpendicular to the radius through the point of contact. You will get a right angled triangle. Solve it and find the length of the tangent drawn.
Complete step-by-step answer:
Let us consider ‘O’ as the center of the circle. Consider the figure drawn.
Let OT be the radius of the circle.
\[\therefore \]OT = 7 cm.
Let P be the point from which the tangent is drawn to the circle. The tangent meets at point T on the circle. Given that the length from point P to the center O of the circle is 25 cm.
\[\therefore \]Length of OP = 25 cm.
What we need to find is the length of PT.
From the figure, we can assume that radius OT is perpendicular to the tangent drawn, i.e. the tangent to a circle is always perpendicular to the radius through the point of contact.
\[\therefore \angle OTP={{90}^{\circ }}\]
Now let us consider the right angled triangle OTP.
By basic geometry we know that,
\[O{{P}^{2}}=P{{T}^{2}}+O{{T}^{2}}\]i.e.\[{{\left( hypotenuse \right)}^{2}}={{\left( altitude \right)}^{2}}+{{\left( base \right)}^{2}}\]
\[\begin{align}
& \therefore P{{T}^{2}}=O{{P}^{2}}-O{{T}^{2}} \\
& PT=\sqrt{O{{P}^{2}}-O{{T}^{2}}} \\
& PT=\sqrt{{{25}^{2}}-{{7}^{2}}}=\sqrt{625-49}=24cm \\
\end{align}\]
Hence, the length of tangent from point P = 24 cm.
Note: There are a lot of special properties for a tangent to a circle, like a tangent can never cross the circle. It can only touch the circle, like how we have drawn in the figure. At the point of tangency, it is perpendicular to the radius. Therefore, we took angle OTP as \[{{90}^{\circ }}\]. So when you get a question related to tangents, remember both the points.
Complete step-by-step answer:
Let us consider ‘O’ as the center of the circle. Consider the figure drawn.
Let OT be the radius of the circle.
\[\therefore \]OT = 7 cm.
Let P be the point from which the tangent is drawn to the circle. The tangent meets at point T on the circle. Given that the length from point P to the center O of the circle is 25 cm.
\[\therefore \]Length of OP = 25 cm.
What we need to find is the length of PT.
From the figure, we can assume that radius OT is perpendicular to the tangent drawn, i.e. the tangent to a circle is always perpendicular to the radius through the point of contact.
\[\therefore \angle OTP={{90}^{\circ }}\]
Now let us consider the right angled triangle OTP.
By basic geometry we know that,
\[O{{P}^{2}}=P{{T}^{2}}+O{{T}^{2}}\]i.e.\[{{\left( hypotenuse \right)}^{2}}={{\left( altitude \right)}^{2}}+{{\left( base \right)}^{2}}\]
\[\begin{align}
& \therefore P{{T}^{2}}=O{{P}^{2}}-O{{T}^{2}} \\
& PT=\sqrt{O{{P}^{2}}-O{{T}^{2}}} \\
& PT=\sqrt{{{25}^{2}}-{{7}^{2}}}=\sqrt{625-49}=24cm \\
\end{align}\]
Hence, the length of tangent from point P = 24 cm.
Note: There are a lot of special properties for a tangent to a circle, like a tangent can never cross the circle. It can only touch the circle, like how we have drawn in the figure. At the point of tangency, it is perpendicular to the radius. Therefore, we took angle OTP as \[{{90}^{\circ }}\]. So when you get a question related to tangents, remember both the points.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE