Answer
Verified
470.1k+ views
Hint: Here, we will use Pythagoras theorem to solve this. In Pythagoras theorem, the sum of the squares on the legs of the right triangle is equal to the square on the hypotenuse.
Formula used
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
Complete step by step solution:
Let $AC$be the perpendicular on the side $BD$.
Now, we will solve $\Delta ABC$,
Here, $AB = 30cm$
$BC = y$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(AB)^2} = {(BC)^2} + {(AC)^2}$
${(30)^2} = {(y)^2} + {(AC)^2}$
$30 \times 30 = {y^2} + {(AC)^2}$
$900 - {y^2} = A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,....(i)$
We will take $\Delta ACD$
$AD = 25cm$
$CD = 7cm$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(25)^2} = {(7)^2} + {(AC)^2}$
$25 \times 25 = 7 \times 7 + {(AC)^2}$
$625 = 49 + {(AC)^2}$
$625 - 49 = {(AC)^2}$
$576 = {(AC)^2}$
Square root both sides, we will get
\[\sqrt {576} = \sqrt {{{(AC)}^2}} \]
$\sqrt {576} = AC$
We will factorize the value $576$.
\[576 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3\]
Now, $\sqrt {576} $$ = AC$
$\sqrt {2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3} = AC$
$\sqrt {{2^2} \times {2^2} \times {2^2} \times {3^2}} = AC$
$\sqrt {{{(24)}^2}} = AC$2
$24cm = AC$
Put the value of $AC$ in equation (i) we have
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = 576$
$900 - 576 = {y^2}$
$324 = {y^2}$
So, factorize the number $324$
$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$
$ = {2^2} \times {3^2} \times {3^2}$
$ = {(2 \times 3 \times 3)^2} = {(18)^2}$
So, ${(18)^2} = {y^2}$
When the powers are same, we equate the base,
Hence, $y = 18$
Note: Students must first be able to identify the type of triangle they are dealing with and then apply the appropriate formula for solving the problem.Pythagoras formula can be applied only to right angled triangles
Formula used
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
Complete step by step solution:
Let $AC$be the perpendicular on the side $BD$.
Now, we will solve $\Delta ABC$,
Here, $AB = 30cm$
$BC = y$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(AB)^2} = {(BC)^2} + {(AC)^2}$
${(30)^2} = {(y)^2} + {(AC)^2}$
$30 \times 30 = {y^2} + {(AC)^2}$
$900 - {y^2} = A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,....(i)$
We will take $\Delta ACD$
$AD = 25cm$
$CD = 7cm$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(25)^2} = {(7)^2} + {(AC)^2}$
$25 \times 25 = 7 \times 7 + {(AC)^2}$
$625 = 49 + {(AC)^2}$
$625 - 49 = {(AC)^2}$
$576 = {(AC)^2}$
Square root both sides, we will get
\[\sqrt {576} = \sqrt {{{(AC)}^2}} \]
$\sqrt {576} = AC$
We will factorize the value $576$.
\[576 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3\]
Now, $\sqrt {576} $$ = AC$
$\sqrt {2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3} = AC$
$\sqrt {{2^2} \times {2^2} \times {2^2} \times {3^2}} = AC$
$\sqrt {{{(24)}^2}} = AC$2
$24cm = AC$
Put the value of $AC$ in equation (i) we have
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = 576$
$900 - 576 = {y^2}$
$324 = {y^2}$
So, factorize the number $324$
$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$
$ = {2^2} \times {3^2} \times {3^2}$
$ = {(2 \times 3 \times 3)^2} = {(18)^2}$
So, ${(18)^2} = {y^2}$
When the powers are same, we equate the base,
Hence, $y = 18$
Note: Students must first be able to identify the type of triangle they are dealing with and then apply the appropriate formula for solving the problem.Pythagoras formula can be applied only to right angled triangles
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE