How do you find the length, width, and height of a rectangular prism if the volume is \[{{h}^{3}}+{{h}^{2}}-20h\] cubic meters?
Answer
Verified
448.8k+ views
Hint: A polynomial is factored completely when it is expressed as a product of one or more polynomials that cannot be factored further. To factor a polynomial completely, we need to identify the greatest common monomial factor. Not all polynomials can be factored in. We know that the volume of a rectangular prism is \[V=l.b.h\].
Complete step by step answer:
As per the given question, we have to find the dimensions of the rectangular prism using factoring methods by factoring the given volume expression. Here, we have the given volume expression \[V={{h}^{3}}+{{h}^{2}}-20h\].
Let a rectangular prism with the dimension’s length ‘l’, width ‘b’ and height ‘h’ as shown in the figure below:
Then, the volume of the prism is given by \[V=l.b.h\]. But we know that the volume of the required prism is \[V={{h}^{3}}+{{h}^{2}}-20h\]. Hence, we can combine both expressions. Then, we get
\[\Rightarrow l.b.h={{h}^{3}}+{{h}^{2}}-20h\].
Here, we can observe that ‘h’ is common on both sides of the equation. Thus, we can eliminate ‘h’ to get
\[\Rightarrow \dfrac{l.b.h}{h}=\dfrac{{{h}^{3}}+{{h}^{2}}-20h}{h}\Rightarrow l.b={{h}^{2}}+h-20\]
In the quadratic equation \[{{h}^{2}}+h-20\], x-coefficient is 1. The product of \[{{x}^{2}}-\text{coefficient}\] and the constant term is -20. We split up x-coefficient 1 into two numbers whose sum (or difference) is 1 and product is -20. Hence, the required numbers are 5 and -4. Thus, the equation becomes
\[\Rightarrow l.b={{h}^{2}}+h-20={{h}^{2}}+5h-4h-20\]
Taking \[(h+5)\] common in the first 2 terms and last 2 terms, we get
\[\Rightarrow l.b=h(h+5)-4(h+5)=(h-4)(h+5)\]
As we know that length is greater than width, then we get \[l=(h+5)\] meters and \[b=(h-4)\] meters.
\[\therefore l=(h+5),\text{ }b=(h-4)\text{ and }h=h\] meters are the length, width and height of the rectangular prism respectively.
Note:
In order to solve these types of questions, we need to have enough knowledge of factoring methods of polynomials. If polynomials can’t be factored then we can use quadratic formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] to find the factors. We should avoid calculation mistakes to get the correct solution.
Complete step by step answer:
As per the given question, we have to find the dimensions of the rectangular prism using factoring methods by factoring the given volume expression. Here, we have the given volume expression \[V={{h}^{3}}+{{h}^{2}}-20h\].
Let a rectangular prism with the dimension’s length ‘l’, width ‘b’ and height ‘h’ as shown in the figure below:
Then, the volume of the prism is given by \[V=l.b.h\]. But we know that the volume of the required prism is \[V={{h}^{3}}+{{h}^{2}}-20h\]. Hence, we can combine both expressions. Then, we get
\[\Rightarrow l.b.h={{h}^{3}}+{{h}^{2}}-20h\].
Here, we can observe that ‘h’ is common on both sides of the equation. Thus, we can eliminate ‘h’ to get
\[\Rightarrow \dfrac{l.b.h}{h}=\dfrac{{{h}^{3}}+{{h}^{2}}-20h}{h}\Rightarrow l.b={{h}^{2}}+h-20\]
In the quadratic equation \[{{h}^{2}}+h-20\], x-coefficient is 1. The product of \[{{x}^{2}}-\text{coefficient}\] and the constant term is -20. We split up x-coefficient 1 into two numbers whose sum (or difference) is 1 and product is -20. Hence, the required numbers are 5 and -4. Thus, the equation becomes
\[\Rightarrow l.b={{h}^{2}}+h-20={{h}^{2}}+5h-4h-20\]
Taking \[(h+5)\] common in the first 2 terms and last 2 terms, we get
\[\Rightarrow l.b=h(h+5)-4(h+5)=(h-4)(h+5)\]
As we know that length is greater than width, then we get \[l=(h+5)\] meters and \[b=(h-4)\] meters.
\[\therefore l=(h+5),\text{ }b=(h-4)\text{ and }h=h\] meters are the length, width and height of the rectangular prism respectively.
Note:
In order to solve these types of questions, we need to have enough knowledge of factoring methods of polynomials. If polynomials can’t be factored then we can use quadratic formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] to find the factors. We should avoid calculation mistakes to get the correct solution.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE