Answer
Verified
495.9k+ views
Hint: For solving the problem, we should know about the basics of finding a median from each of the vertices of the triangle. Finally, we can find the length of the medians by using distance formula on the vertices joining two points of a median. Distance formula is given by \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}\]. Here, $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$ are the respective vertices between which we want to find the distance.
Complete step-by-step answer:
Basically, before starting to solve the problem, we first try to understand the definition of median which would be useful for doing this question. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Thus, in the below figure of triangle, AE, CD, and BF are the three medians of the triangle. We first start by plotting the vertices A, B and C and then finding the respective mid-points of the sides AB, BC and CA.
Here, E, D and F are the respective mid-points of CB, AB and AC. Let A (0,0,6), B (0,4,0) and C (6,0,0).
Now, to find the midpoint between $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$, the formula is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)\] for $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$ to be the respective vertices of the side of a triangle. Thus, we use this to find E, D and F. Thus, we get,
E = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{4+0}{2},\dfrac{0+0}{2} \right)\]= (3,2,0)
D=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+0}{2},\dfrac{0+4}{2},\dfrac{6+0}{2} \right)\]= (0,2,3)
F=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{0+0}{2},\dfrac{6+0}{2} \right)\]= (3,0,3)
Now, we try to find median lengths using the distance formula. We have distance formula as \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}\]. Thus,
AD = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(2-0)}^{2}}+{{(0-6)}^{2}}}=\sqrt{49}\]= 7
BE =\[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(0-4)}^{2}}+{{(3-0)}^{2}}}=\sqrt{34}\]
CF = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(0-6)}^{2}}+{{(2-0)}^{2}}+{{(3-0)}^{2}}}=\sqrt{49}\]= 7
Hence, the length of the medians are 7, $\sqrt{34}$ and 7.
Note: Another alternative to finding the lengths of the median of the triangle is to use the formula by Apollonius’ theorem –
$\sqrt{\dfrac{2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{c}^{2}}-{{b}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}}}{4}}$. Here; a, b and c are the lengths of the sides of the triangle opposite to angles A, B and C.
Complete step-by-step answer:
Basically, before starting to solve the problem, we first try to understand the definition of median which would be useful for doing this question. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Thus, in the below figure of triangle, AE, CD, and BF are the three medians of the triangle. We first start by plotting the vertices A, B and C and then finding the respective mid-points of the sides AB, BC and CA.
Here, E, D and F are the respective mid-points of CB, AB and AC. Let A (0,0,6), B (0,4,0) and C (6,0,0).
Now, to find the midpoint between $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$, the formula is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)\] for $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$ to be the respective vertices of the side of a triangle. Thus, we use this to find E, D and F. Thus, we get,
E = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{4+0}{2},\dfrac{0+0}{2} \right)\]= (3,2,0)
D=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+0}{2},\dfrac{0+4}{2},\dfrac{6+0}{2} \right)\]= (0,2,3)
F=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{0+0}{2},\dfrac{6+0}{2} \right)\]= (3,0,3)
Now, we try to find median lengths using the distance formula. We have distance formula as \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}\]. Thus,
AD = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(2-0)}^{2}}+{{(0-6)}^{2}}}=\sqrt{49}\]= 7
BE =\[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(0-4)}^{2}}+{{(3-0)}^{2}}}=\sqrt{34}\]
CF = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(0-6)}^{2}}+{{(2-0)}^{2}}+{{(3-0)}^{2}}}=\sqrt{49}\]= 7
Hence, the length of the medians are 7, $\sqrt{34}$ and 7.
Note: Another alternative to finding the lengths of the median of the triangle is to use the formula by Apollonius’ theorem –
$\sqrt{\dfrac{2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{c}^{2}}-{{b}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}}}{4}}$. Here; a, b and c are the lengths of the sides of the triangle opposite to angles A, B and C.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers