Answer
Verified
434.1k+ views
Hint: In order to find the solution to this question, we will first convert the term in limits form and then find the limits. We are using limits because infinity is not a number as $x$ approaches infinity.
Complete step by step answer:
From the question, we can see that we have been asked to find the value of $\ln x$ when $x$ approaches negative infinity.
So, to start with the solution, we will first convert the given statement into a mathematical expression. Therefore, we can convert into limits since infinity is not a number.
Therefore, we get:
$\displaystyle \lim_{x \to -\infty }\left( \ln \left( x \right) \right)$
As we can see above, x approaches to negative infinity, therefore the answer is undefined because $-\infty $ is not in the domain of $\ln \left( x \right)$, the limit does not exist.
$\ln \left( -\infty \right)$ is undefined.
If the scenario is:
x approaches infinity that is positive infinity, then:
$\displaystyle \lim_{x \to \infty }\ln \left( x \right)=\infty $
That is the limit of the natural logarithm of $x$ when $x$ approaches positive infinity is infinity.
We can understand with the help of the following graph:
As when $x$ approaches minus infinity:
In this case, the natural logarithm of minus infinity is undefined for real numbers, since the natural logarithm function is undefined for negative numbers:
Therefore, we get:
$\displaystyle \lim_{x \to \infty }\ln \left( x \right)$ is undefined.
We can understand with the help of the following graph:
Therefore, we can conclude at this point:
$\ln \left( \infty \right)=\infty $
And
$\ln \left( x \right)$ is undefined.
Note:
In a hurry, we might end up reading the question wrong and then getting the wrong answer. So, we have to be very careful about that. Also, we can solve this question from the graph of ln x, but sometimes we get confused about the graph, so we have used the conventional method to find the answer.
Complete step by step answer:
From the question, we can see that we have been asked to find the value of $\ln x$ when $x$ approaches negative infinity.
So, to start with the solution, we will first convert the given statement into a mathematical expression. Therefore, we can convert into limits since infinity is not a number.
Therefore, we get:
$\displaystyle \lim_{x \to -\infty }\left( \ln \left( x \right) \right)$
As we can see above, x approaches to negative infinity, therefore the answer is undefined because $-\infty $ is not in the domain of $\ln \left( x \right)$, the limit does not exist.
$\ln \left( -\infty \right)$ is undefined.
If the scenario is:
x approaches infinity that is positive infinity, then:
$\displaystyle \lim_{x \to \infty }\ln \left( x \right)=\infty $
That is the limit of the natural logarithm of $x$ when $x$ approaches positive infinity is infinity.
We can understand with the help of the following graph:
As when $x$ approaches minus infinity:
In this case, the natural logarithm of minus infinity is undefined for real numbers, since the natural logarithm function is undefined for negative numbers:
Therefore, we get:
$\displaystyle \lim_{x \to \infty }\ln \left( x \right)$ is undefined.
We can understand with the help of the following graph:
Therefore, we can conclude at this point:
$\ln \left( \infty \right)=\infty $
And
$\ln \left( x \right)$ is undefined.
Note:
In a hurry, we might end up reading the question wrong and then getting the wrong answer. So, we have to be very careful about that. Also, we can solve this question from the graph of ln x, but sometimes we get confused about the graph, so we have used the conventional method to find the answer.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE