
How to find the linear equation of the plane through the point $\left( {1,2,3} \right)$ and contains the line represented by the vector equation
$r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ ?
Answer
551.7k+ views
Hint: Here, we are required to find the linear equation of the plane through the given point which contains the line with the given vector equation. Thus, we will use the parametric form of equation of line and substitute the given values and with the help of plane and vector equation, we will solve it further to find the required linear equation of the given plane.
Formula Used:
1. The parametric line equation is given by: $p = {p_0} + t \cdot \overrightarrow v $
2. The plane equation is given by: $\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Complete step-by-step answer:
As we know,
The parametric line equation is given by:
$p = {p_0} + t \cdot \overrightarrow v $
Where, $p = \left\{ {x,y,z} \right\}$, ${p_0} = \left\{ {0,6,1} \right\}$ and $\overrightarrow v = \left\{ {3, - 2, - 2} \right\}$
Also, the plane equation is given by
$\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Here, according to the question, we have, ${p_1} = \left\{ {1,2,3} \right\}$and $\overrightarrow w $ is perpendicular to $\overrightarrow v $ and to the segment ${p_1} - {p_0}$ such that:
$\overrightarrow w = \overrightarrow v \times \left( {{p_1} - {p_0}} \right) = \left\{ {3, - 2, - 2} \right\} \times \left\{ {1, - 4, - 2} \right\}$
Then,
$\overrightarrow w = \left\{ { - 4,4, - 10} \right\}$
The plane equation is given as:
$\left( { - 4} \right)\left( {x - 1} \right) + 4\left( {y - 2} \right) + \left( { - 10} \right)\left( {z - 3} \right) = 0$
$ \Rightarrow - 4x + 4 + 4y - 8 - 10z + 30 = 0$
Solving the like terms further, we get,
$ \Rightarrow - 4x + 4y - 10z + 26 = 0$
Therefore, the linear equation of the plane through the point $\left( {1,2,3} \right)$ which contains the line represented by the vector equation $r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ is represented by $ - 4x + 4y - 10z + 26 = 0$.
Hence, this is the required answer.
Note:
Parametric equation is a type of equation that employs an independent variable called a parameter (often denoted by $t$) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable. Also, a vector equation is any function that takes any one or more variables and returns a vector. The vector equation of a line is an equation that identifies the position vector of every point along the line.
Formula Used:
1. The parametric line equation is given by: $p = {p_0} + t \cdot \overrightarrow v $
2. The plane equation is given by: $\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Complete step-by-step answer:
As we know,
The parametric line equation is given by:
$p = {p_0} + t \cdot \overrightarrow v $
Where, $p = \left\{ {x,y,z} \right\}$, ${p_0} = \left\{ {0,6,1} \right\}$ and $\overrightarrow v = \left\{ {3, - 2, - 2} \right\}$
Also, the plane equation is given by
$\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Here, according to the question, we have, ${p_1} = \left\{ {1,2,3} \right\}$and $\overrightarrow w $ is perpendicular to $\overrightarrow v $ and to the segment ${p_1} - {p_0}$ such that:
$\overrightarrow w = \overrightarrow v \times \left( {{p_1} - {p_0}} \right) = \left\{ {3, - 2, - 2} \right\} \times \left\{ {1, - 4, - 2} \right\}$
Then,
$\overrightarrow w = \left\{ { - 4,4, - 10} \right\}$
The plane equation is given as:
$\left( { - 4} \right)\left( {x - 1} \right) + 4\left( {y - 2} \right) + \left( { - 10} \right)\left( {z - 3} \right) = 0$
$ \Rightarrow - 4x + 4 + 4y - 8 - 10z + 30 = 0$
Solving the like terms further, we get,
$ \Rightarrow - 4x + 4y - 10z + 26 = 0$
Therefore, the linear equation of the plane through the point $\left( {1,2,3} \right)$ which contains the line represented by the vector equation $r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ is represented by $ - 4x + 4y - 10z + 26 = 0$.
Hence, this is the required answer.
Note:
Parametric equation is a type of equation that employs an independent variable called a parameter (often denoted by $t$) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable. Also, a vector equation is any function that takes any one or more variables and returns a vector. The vector equation of a line is an equation that identifies the position vector of every point along the line.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

