Answer
Verified
429.9k+ views
Hint: Here, we are required to find the linear equation of the plane through the given point which contains the line with the given vector equation. Thus, we will use the parametric form of equation of line and substitute the given values and with the help of plane and vector equation, we will solve it further to find the required linear equation of the given plane.
Formula Used:
1. The parametric line equation is given by: $p = {p_0} + t \cdot \overrightarrow v $
2. The plane equation is given by: $\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Complete step-by-step answer:
As we know,
The parametric line equation is given by:
$p = {p_0} + t \cdot \overrightarrow v $
Where, $p = \left\{ {x,y,z} \right\}$, ${p_0} = \left\{ {0,6,1} \right\}$ and $\overrightarrow v = \left\{ {3, - 2, - 2} \right\}$
Also, the plane equation is given by
$\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Here, according to the question, we have, ${p_1} = \left\{ {1,2,3} \right\}$and $\overrightarrow w $ is perpendicular to $\overrightarrow v $ and to the segment ${p_1} - {p_0}$ such that:
$\overrightarrow w = \overrightarrow v \times \left( {{p_1} - {p_0}} \right) = \left\{ {3, - 2, - 2} \right\} \times \left\{ {1, - 4, - 2} \right\}$
Then,
$\overrightarrow w = \left\{ { - 4,4, - 10} \right\}$
The plane equation is given as:
$\left( { - 4} \right)\left( {x - 1} \right) + 4\left( {y - 2} \right) + \left( { - 10} \right)\left( {z - 3} \right) = 0$
$ \Rightarrow - 4x + 4 + 4y - 8 - 10z + 30 = 0$
Solving the like terms further, we get,
$ \Rightarrow - 4x + 4y - 10z + 26 = 0$
Therefore, the linear equation of the plane through the point $\left( {1,2,3} \right)$ which contains the line represented by the vector equation $r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ is represented by $ - 4x + 4y - 10z + 26 = 0$.
Hence, this is the required answer.
Note:
Parametric equation is a type of equation that employs an independent variable called a parameter (often denoted by $t$) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable. Also, a vector equation is any function that takes any one or more variables and returns a vector. The vector equation of a line is an equation that identifies the position vector of every point along the line.
Formula Used:
1. The parametric line equation is given by: $p = {p_0} + t \cdot \overrightarrow v $
2. The plane equation is given by: $\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Complete step-by-step answer:
As we know,
The parametric line equation is given by:
$p = {p_0} + t \cdot \overrightarrow v $
Where, $p = \left\{ {x,y,z} \right\}$, ${p_0} = \left\{ {0,6,1} \right\}$ and $\overrightarrow v = \left\{ {3, - 2, - 2} \right\}$
Also, the plane equation is given by
$\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Here, according to the question, we have, ${p_1} = \left\{ {1,2,3} \right\}$and $\overrightarrow w $ is perpendicular to $\overrightarrow v $ and to the segment ${p_1} - {p_0}$ such that:
$\overrightarrow w = \overrightarrow v \times \left( {{p_1} - {p_0}} \right) = \left\{ {3, - 2, - 2} \right\} \times \left\{ {1, - 4, - 2} \right\}$
Then,
$\overrightarrow w = \left\{ { - 4,4, - 10} \right\}$
The plane equation is given as:
$\left( { - 4} \right)\left( {x - 1} \right) + 4\left( {y - 2} \right) + \left( { - 10} \right)\left( {z - 3} \right) = 0$
$ \Rightarrow - 4x + 4 + 4y - 8 - 10z + 30 = 0$
Solving the like terms further, we get,
$ \Rightarrow - 4x + 4y - 10z + 26 = 0$
Therefore, the linear equation of the plane through the point $\left( {1,2,3} \right)$ which contains the line represented by the vector equation $r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ is represented by $ - 4x + 4y - 10z + 26 = 0$.
Hence, this is the required answer.
Note:
Parametric equation is a type of equation that employs an independent variable called a parameter (often denoted by $t$) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable. Also, a vector equation is any function that takes any one or more variables and returns a vector. The vector equation of a line is an equation that identifies the position vector of every point along the line.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE