Answer
Verified
497.7k+ views
Hint: Write the equation of chord and satisfy the given point and use formula for midpoint which is \[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\].
Complete step-by-step answer:
We are given a chord of the parabola which passes through the point \[\left( 3b,b \right)\].
Here, we have to find the locus of midpoint of a given chord.
Let the midpoint of the given chord be \[\left( h,k \right)\].
We know that any general point on parabola \[P\left( t \right)\] is \[\left( a{{t}^{2}},2at \right)\].
So, we get point \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\]
We know that equation of any line passing through \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is
\[\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)\]
Therefore, we get equation of chord passing through \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
Since we know that,
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
Therefore, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}\]
After cross multiplying the above equation, we get,
\[\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)\]
Simplifying the equation, we get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}\]
Finally, we get
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)\]
Now, we know that midpoint say \[\left( x,y \right)\] of any line joining points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is:
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Therefore, we get the midpoint \[\left( h,k \right)\] of chord joining \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as:
\[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)\]
\[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)\]
Taking 2a common from equation \[\left( iii \right)\], we get,
\[k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}\].
Therefore, we get,
\[\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)\]
Taking ‘a’ common from equation\[\left( ii \right)\], we get,
\[h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}\]
Or, \[\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}\]
Since, we know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
Now, we subtract 2ab from both sides. We get,
\[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]
Therefore, we get,
\[\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Now, we put the value of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] from equation (iv). We get,
\[\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Or \[2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
By dividing both sides by 2, we get,
\[{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)\]
Now, we will put the values of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] and \[\left( {{t}_{1}}{{t}_{2}} \right)\] from equation \[\left( iv \right)\]and \[\left( v \right)\] in equation \[\left( i \right)\].
We get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x\]
\[\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x\]
\[\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x\]
By cancelling the like terms, we get,
\[\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x\]
After simplifying and cross-multiplying above equation, we get,
\[\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa\]
Now, we are given that this chord passes through point \[\left( 3b,b \right)\].
Therefore, we will put \[x=3b\] and \[y=b\].
We get,
\[bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a\]
\[\Rightarrow bk-{{k}^{2}}+2ha=6ab\]
By transposing all the terms to one side,
We get,
\[{{k}^{2}}-bk-2ha+6ab=0\]
Now, to get the locus, we will replace h by x and k by y. We get,
\[{{y}^{2}}-by-2ax+6ab=0\]
So, the locus of the midpoint of chord passing through \[\left( 3b,b \right)\] is \[{{y}^{2}}-by-2ax+6ab=0\].
Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say \[\left( {{x}_{1}},{{y}_{1}} \right)\] which is \[\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)\] and put \[\left( h,k \right)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] and point through which chord in passing [here (3b,b)] in place of \[\left( x,y \right)\] to get locus of midpoint of chord.
Complete step-by-step answer:
We are given a chord of the parabola which passes through the point \[\left( 3b,b \right)\].
Here, we have to find the locus of midpoint of a given chord.
Let the midpoint of the given chord be \[\left( h,k \right)\].
We know that any general point on parabola \[P\left( t \right)\] is \[\left( a{{t}^{2}},2at \right)\].
So, we get point \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\]
We know that equation of any line passing through \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is
\[\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)\]
Therefore, we get equation of chord passing through \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
Since we know that,
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
Therefore, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}\]
After cross multiplying the above equation, we get,
\[\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)\]
Simplifying the equation, we get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}\]
Finally, we get
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)\]
Now, we know that midpoint say \[\left( x,y \right)\] of any line joining points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is:
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Therefore, we get the midpoint \[\left( h,k \right)\] of chord joining \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as:
\[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)\]
\[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)\]
Taking 2a common from equation \[\left( iii \right)\], we get,
\[k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}\].
Therefore, we get,
\[\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)\]
Taking ‘a’ common from equation\[\left( ii \right)\], we get,
\[h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}\]
Or, \[\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}\]
Since, we know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
Now, we subtract 2ab from both sides. We get,
\[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]
Therefore, we get,
\[\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Now, we put the value of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] from equation (iv). We get,
\[\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Or \[2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
By dividing both sides by 2, we get,
\[{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)\]
Now, we will put the values of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] and \[\left( {{t}_{1}}{{t}_{2}} \right)\] from equation \[\left( iv \right)\]and \[\left( v \right)\] in equation \[\left( i \right)\].
We get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x\]
\[\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x\]
\[\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x\]
By cancelling the like terms, we get,
\[\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x\]
After simplifying and cross-multiplying above equation, we get,
\[\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa\]
Now, we are given that this chord passes through point \[\left( 3b,b \right)\].
Therefore, we will put \[x=3b\] and \[y=b\].
We get,
\[bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a\]
\[\Rightarrow bk-{{k}^{2}}+2ha=6ab\]
By transposing all the terms to one side,
We get,
\[{{k}^{2}}-bk-2ha+6ab=0\]
Now, to get the locus, we will replace h by x and k by y. We get,
\[{{y}^{2}}-by-2ax+6ab=0\]
So, the locus of the midpoint of chord passing through \[\left( 3b,b \right)\] is \[{{y}^{2}}-by-2ax+6ab=0\].
Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say \[\left( {{x}_{1}},{{y}_{1}} \right)\] which is \[\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)\] and put \[\left( h,k \right)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] and point through which chord in passing [here (3b,b)] in place of \[\left( x,y \right)\] to get locus of midpoint of chord.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE