Answer
Verified
488.7k+ views
Hint: Write $\dfrac{1}{256}$ in the form of ${{2}^{n}}$ and also change the decimal form of 0.3 into fractional form. Then use properties of logarithms to find the required value. Use base to power conversion formula of logarithms.
Complete step-by-step answer:
First we should understand the term ‘logarithm’ and then we will see the property of logarithm required to solve this question. In mathematics, the logarithm is the inverse function of exponentiation. That means that the logarithm of a given number ‘n’ is the exponent to which another fixed number the base ‘b’ must be raised, to produce that number ‘n’. Common logarithm has base 10, however we can convert it to any number. Let us take an example: consider a number, here I am using 100, so, 100 can be written as 10 raised to the power 2 or mathematically, ${{10}^{2}}$. Now, we have to find the logarithmic value of 100 with 10 as considering the base of the logarithm. In other words, we can interpret the question as ‘to how much must be the power of 10 should be raised, so that it becomes equal to 100’. We know that 10 raised to power 2 is equal to 100, so the answer is 2. Mathematically, it can be written as ${{\log }_{10}}100=2$. Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Now, come to the question, $\dfrac{1}{256}$ can be written as $\dfrac{1}{{{2}^{8}}}={{2}^{-8}}$.
Now, ${{\log }_{2}}{{2}^{-8}}=(-8\times {{\log }_{2}}2)=(-8\times 1)=-8$.
Also, $0.3=\dfrac{3}{10}$. Therefore, ${{\log }_{9}}0.3={{\log }_{9}}\left( \dfrac{3}{10} \right)={{\log }_{{{3}^{2}}}}\left( \dfrac{3}{10} \right)=\dfrac{1}{2}\left( {{\log }_{3}}3-{{\log }_{3}}10 \right)=\dfrac{1}{2}\left( 1-{{\log }_{3}}10 \right)$.
Note: we would not have easily solved the question if we would not have converted $\dfrac{1}{256}$ into exponent form. Log 10 to the base 3 can be calculated by using a calculator. Fractional conversion of 0.3 was necessary.
Complete step-by-step answer:
First we should understand the term ‘logarithm’ and then we will see the property of logarithm required to solve this question. In mathematics, the logarithm is the inverse function of exponentiation. That means that the logarithm of a given number ‘n’ is the exponent to which another fixed number the base ‘b’ must be raised, to produce that number ‘n’. Common logarithm has base 10, however we can convert it to any number. Let us take an example: consider a number, here I am using 100, so, 100 can be written as 10 raised to the power 2 or mathematically, ${{10}^{2}}$. Now, we have to find the logarithmic value of 100 with 10 as considering the base of the logarithm. In other words, we can interpret the question as ‘to how much must be the power of 10 should be raised, so that it becomes equal to 100’. We know that 10 raised to power 2 is equal to 100, so the answer is 2. Mathematically, it can be written as ${{\log }_{10}}100=2$. Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Now, come to the question, $\dfrac{1}{256}$ can be written as $\dfrac{1}{{{2}^{8}}}={{2}^{-8}}$.
Now, ${{\log }_{2}}{{2}^{-8}}=(-8\times {{\log }_{2}}2)=(-8\times 1)=-8$.
Also, $0.3=\dfrac{3}{10}$. Therefore, ${{\log }_{9}}0.3={{\log }_{9}}\left( \dfrac{3}{10} \right)={{\log }_{{{3}^{2}}}}\left( \dfrac{3}{10} \right)=\dfrac{1}{2}\left( {{\log }_{3}}3-{{\log }_{3}}10 \right)=\dfrac{1}{2}\left( 1-{{\log }_{3}}10 \right)$.
Note: we would not have easily solved the question if we would not have converted $\dfrac{1}{256}$ into exponent form. Log 10 to the base 3 can be calculated by using a calculator. Fractional conversion of 0.3 was necessary.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE