Find the logarithms of \[\dfrac{1}{256}\text{ to base }2\] \[\text{and 0}\text{.3 to base 9}\].
Answer
Verified
513k+ views
Hint: Write $\dfrac{1}{256}$ in the form of ${{2}^{n}}$ and also change the decimal form of 0.3 into fractional form. Then use properties of logarithms to find the required value. Use base to power conversion formula of logarithms.
Complete step-by-step answer:
First we should understand the term ‘logarithm’ and then we will see the property of logarithm required to solve this question. In mathematics, the logarithm is the inverse function of exponentiation. That means that the logarithm of a given number ‘n’ is the exponent to which another fixed number the base ‘b’ must be raised, to produce that number ‘n’. Common logarithm has base 10, however we can convert it to any number. Let us take an example: consider a number, here I am using 100, so, 100 can be written as 10 raised to the power 2 or mathematically, ${{10}^{2}}$. Now, we have to find the logarithmic value of 100 with 10 as considering the base of the logarithm. In other words, we can interpret the question as ‘to how much must be the power of 10 should be raised, so that it becomes equal to 100’. We know that 10 raised to power 2 is equal to 100, so the answer is 2. Mathematically, it can be written as ${{\log }_{10}}100=2$. Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Now, come to the question, $\dfrac{1}{256}$ can be written as $\dfrac{1}{{{2}^{8}}}={{2}^{-8}}$.
Now, ${{\log }_{2}}{{2}^{-8}}=(-8\times {{\log }_{2}}2)=(-8\times 1)=-8$.
Also, $0.3=\dfrac{3}{10}$. Therefore, ${{\log }_{9}}0.3={{\log }_{9}}\left( \dfrac{3}{10} \right)={{\log }_{{{3}^{2}}}}\left( \dfrac{3}{10} \right)=\dfrac{1}{2}\left( {{\log }_{3}}3-{{\log }_{3}}10 \right)=\dfrac{1}{2}\left( 1-{{\log }_{3}}10 \right)$.
Note: we would not have easily solved the question if we would not have converted $\dfrac{1}{256}$ into exponent form. Log 10 to the base 3 can be calculated by using a calculator. Fractional conversion of 0.3 was necessary.
Complete step-by-step answer:
First we should understand the term ‘logarithm’ and then we will see the property of logarithm required to solve this question. In mathematics, the logarithm is the inverse function of exponentiation. That means that the logarithm of a given number ‘n’ is the exponent to which another fixed number the base ‘b’ must be raised, to produce that number ‘n’. Common logarithm has base 10, however we can convert it to any number. Let us take an example: consider a number, here I am using 100, so, 100 can be written as 10 raised to the power 2 or mathematically, ${{10}^{2}}$. Now, we have to find the logarithmic value of 100 with 10 as considering the base of the logarithm. In other words, we can interpret the question as ‘to how much must be the power of 10 should be raised, so that it becomes equal to 100’. We know that 10 raised to power 2 is equal to 100, so the answer is 2. Mathematically, it can be written as ${{\log }_{10}}100=2$. Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
Now, come to the question, $\dfrac{1}{256}$ can be written as $\dfrac{1}{{{2}^{8}}}={{2}^{-8}}$.
Now, ${{\log }_{2}}{{2}^{-8}}=(-8\times {{\log }_{2}}2)=(-8\times 1)=-8$.
Also, $0.3=\dfrac{3}{10}$. Therefore, ${{\log }_{9}}0.3={{\log }_{9}}\left( \dfrac{3}{10} \right)={{\log }_{{{3}^{2}}}}\left( \dfrac{3}{10} \right)=\dfrac{1}{2}\left( {{\log }_{3}}3-{{\log }_{3}}10 \right)=\dfrac{1}{2}\left( 1-{{\log }_{3}}10 \right)$.
Note: we would not have easily solved the question if we would not have converted $\dfrac{1}{256}$ into exponent form. Log 10 to the base 3 can be calculated by using a calculator. Fractional conversion of 0.3 was necessary.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
How many valence electrons does nitrogen have class 11 chemistry CBSE