Answer
Verified
422.1k+ views
Hint: Maclaurin series is just a special case of Taylor series centered at $x=0$. It is given as $f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty $ where, ${f}'\left( 0 \right),{f}''\left( 0 \right),{f}'''\left( 0 \right)$ are the first, second and third derivatives of the function$f\left( x \right)$ at $x=0$. Here, $1!,2!,3!$ are the factorials of 1,2 and 3 respectively. Therefore, we shall calculate a few terms and then observe the pattern occurring to find our final solution.
Complete step-by-step solution:
This series follows a pattern consisting of the derivative of the function, x raised to a certain power and the factorial of the number.
Let us differentiate the function $f\left( x \right)$ now. We shall use the property of differentiation given as $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ several times to differentiate the function.
$\begin{align}
& \Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{1}{{{\left( 1+x \right)}^{2}}} \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}$ …………….. (1)
Again differentiating the function with respect to x, we get:
$\Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}{f}'\left( x \right)$
$\begin{align}
& \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( \dfrac{-2}{{{\left( 1+x \right)}^{3}}} \right) \\
& \Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)1$
$\Rightarrow {f}''\left( x \right)=\dfrac{6}{{{\left( 1+x \right)}^{4}}}$ …………………… (2)
Third time differentiating the function with respect to x, we get
$\begin{align}
& \Rightarrow \dfrac{d}{dx}{f}''\left( x \right)=\dfrac{d}{dx}\dfrac{6}{{{\left( 1+x \right)}^{4}}} \\
& \Rightarrow {f}'''\left( x \right)=6\dfrac{d}{dx}\dfrac{1}{{{\left( 1+x \right)}^{4}}} \\
\end{align}$
$\Rightarrow {f}'''\left( x \right)=6\left( \dfrac{-4}{{{\left( 1+x \right)}^{5}}} \right)\dfrac{d}{dx}\left( 1+x \right)$
$\Rightarrow {f}'''\left( x \right)=\left( \dfrac{-24}{{{\left( 1+x \right)}^{5}}} \right)1$
$\Rightarrow {f}'''\left( x \right)=\dfrac{-24}{{{\left( 1+x \right)}^{5}}}$ ………………. (3)
From (1), (2) and (3), we substitute the value of x equals to zero to calculate the value of the first, second and third derivative of function at point $x=0$.
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{{{\left( 1+0 \right)}^{3}}}$
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{1}=-2$
Now, ${f}''\left( 0 \right)=\dfrac{6}{{{\left( 1+0 \right)}^{4}}}$
$\Rightarrow {f}''\left( x \right)=6$
And, ${f}'''\left( 0 \right)=\dfrac{-24}{{{\left( 1+0 \right)}^{5}}}$
$\Rightarrow {f}'''\left( x \right)=-24$
Also, $f\left( 0 \right)=\dfrac{1}{{{\left( 1+0 \right)}^{2}}}$
$\Rightarrow f\left( 0 \right)=1$
Hence, the value of the first, second and third derivative of function at point $x=0$ is -2, 6 and -18 respectively. We analyze these results and find that they follow a particular pattern.
The McLaurin series is given as $f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty $.
Substituting the values in this equation, we get
$1+\dfrac{-2}{1}x+\dfrac{6}{2\times 1}{{x}^{2}}+\dfrac{-24}{3\times 2\times 1}{{x}^{3}}+........\infty $
Therefore, the MacLaurin series is given as $1-\dfrac{2}{1!}x+\dfrac{6}{2!}{{x}^{2}}-\dfrac{24}{3!}{{x}^{3}}+........\infty $
Note: We must have prior knowledge of basic differentiation in order to apply the basic properties like chain rule of differentiation while dealing with mathematical problems. The calculations in this problem must be done carefully and all the negative signs must be taken care while performing rigorous multiplication.
Complete step-by-step solution:
This series follows a pattern consisting of the derivative of the function, x raised to a certain power and the factorial of the number.
Let us differentiate the function $f\left( x \right)$ now. We shall use the property of differentiation given as $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ several times to differentiate the function.
$\begin{align}
& \Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{1}{{{\left( 1+x \right)}^{2}}} \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}$ …………….. (1)
Again differentiating the function with respect to x, we get:
$\Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}{f}'\left( x \right)$
$\begin{align}
& \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( \dfrac{-2}{{{\left( 1+x \right)}^{3}}} \right) \\
& \Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)1$
$\Rightarrow {f}''\left( x \right)=\dfrac{6}{{{\left( 1+x \right)}^{4}}}$ …………………… (2)
Third time differentiating the function with respect to x, we get
$\begin{align}
& \Rightarrow \dfrac{d}{dx}{f}''\left( x \right)=\dfrac{d}{dx}\dfrac{6}{{{\left( 1+x \right)}^{4}}} \\
& \Rightarrow {f}'''\left( x \right)=6\dfrac{d}{dx}\dfrac{1}{{{\left( 1+x \right)}^{4}}} \\
\end{align}$
$\Rightarrow {f}'''\left( x \right)=6\left( \dfrac{-4}{{{\left( 1+x \right)}^{5}}} \right)\dfrac{d}{dx}\left( 1+x \right)$
$\Rightarrow {f}'''\left( x \right)=\left( \dfrac{-24}{{{\left( 1+x \right)}^{5}}} \right)1$
$\Rightarrow {f}'''\left( x \right)=\dfrac{-24}{{{\left( 1+x \right)}^{5}}}$ ………………. (3)
From (1), (2) and (3), we substitute the value of x equals to zero to calculate the value of the first, second and third derivative of function at point $x=0$.
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{{{\left( 1+0 \right)}^{3}}}$
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{1}=-2$
Now, ${f}''\left( 0 \right)=\dfrac{6}{{{\left( 1+0 \right)}^{4}}}$
$\Rightarrow {f}''\left( x \right)=6$
And, ${f}'''\left( 0 \right)=\dfrac{-24}{{{\left( 1+0 \right)}^{5}}}$
$\Rightarrow {f}'''\left( x \right)=-24$
Also, $f\left( 0 \right)=\dfrac{1}{{{\left( 1+0 \right)}^{2}}}$
$\Rightarrow f\left( 0 \right)=1$
Hence, the value of the first, second and third derivative of function at point $x=0$ is -2, 6 and -18 respectively. We analyze these results and find that they follow a particular pattern.
The McLaurin series is given as $f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty $.
Substituting the values in this equation, we get
$1+\dfrac{-2}{1}x+\dfrac{6}{2\times 1}{{x}^{2}}+\dfrac{-24}{3\times 2\times 1}{{x}^{3}}+........\infty $
Therefore, the MacLaurin series is given as $1-\dfrac{2}{1!}x+\dfrac{6}{2!}{{x}^{2}}-\dfrac{24}{3!}{{x}^{3}}+........\infty $
Note: We must have prior knowledge of basic differentiation in order to apply the basic properties like chain rule of differentiation while dealing with mathematical problems. The calculations in this problem must be done carefully and all the negative signs must be taken care while performing rigorous multiplication.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE