
How do you find the Maclaurin series for \[{e^x}\sin x\]?
Answer
477.9k+ views
Hint: We need to find the Maclaurin series for \[{e^x}\sin x\]. We know that Maclaurin series is given by \[f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ...\]
To calculate the Maclaurin series, we need to calculate the first, second, third up to \[{n^{th}}\] derivative of the given equation. After finding the derivative we need to calculate the value of the derivatives at zero. Putting all the values in the Maclaurin series of \[f(x)\], we will get the Maclaurin series for \[{e^x}\sin x\].
Complete step by step answer:
We have to find the Maclaurin series of \[{e^x}\sin x\].
Let \[f(x) = {e^x}\sin x - - - (1)\].
As we know that the Maclaurin series is given by \[f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ... - - - (2)\]
Putting \[x = 0\] in \[(1)\], we get
\[ \Rightarrow f(0) = {e^0}\sin \left( 0 \right)\]
On simplifying, we get
\[ \Rightarrow f(0) = 0\]
As we know, from the product rule of differentiation,
\[ \Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Differentiating \[(1)\] with respect to \[x\] using the product rule of differentiation, we get
\[ \Rightarrow f'(x) = \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right)\]
\[ \Rightarrow f'\left( x \right) = \left( {{e^x}} \right)\left( {\dfrac{d}{{dx}}\sin x} \right) + \left( {\dfrac{d}{{dx}}{e^x}} \right)\left( {\sin x} \right)\]
On simplification, we get
\[ \Rightarrow f'\left( x \right) = {e^x}\cos x + {e^x}\sin x\]
Putting \[x = 0\], we get
\[ \Rightarrow f'\left( 0 \right) = {e^0}\cos \left( 0 \right) + {e^0}\sin \left( 0 \right)\]
Putting the value of \[{e^0} = 1\], \[\cos \left( 0 \right) = 1\] and \[\sin \left( 0 \right) = 0\], we get
\[ \Rightarrow f'\left( 0 \right) = 1\]
Now, differentiating \[f'\left( x \right)\] with respect to \[x\], we get
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x}\cos x} \right) + \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right) + \left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\sin x} \right) + \left( {\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)\]
On simplification, we get
\[ \Rightarrow f''\left( x \right) = - {e^x}\sin x + {e^x}\cos x + {e^x}\cos x + {e^x}\sin x\]
On simplification, we get
\[ \Rightarrow f''\left( x \right) = 2{e^x}\cos x\]
Putting \[x = 0\], we get
\[ \Rightarrow f''\left( 0 \right) = 2{e^0}\cos \left( 0 \right)\]
\[ \Rightarrow f''\left( 0 \right) = 2\]
Now, differentiating \[f''\left( x \right)\] with respect to \[x\], we get
\[ \Rightarrow f'''\left( x \right) = 2\dfrac{d}{{dx}}\left( {{e^x}\cos x} \right)\]
\[ \Rightarrow f'''(x) = 2\left( {\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\dfrac{d}{{dx}}{e^x}} \right)\left( {\cos x} \right)} \right)\]
On simplification, we get
\[ \Rightarrow f'''(x) = - 2{e^x}\sin x + 2{e^x}\cos x\]
Putting \[x = 0\], we get
\[ \Rightarrow f'''(0) = - 2{e^0}\sin \left( 0 \right) + 2{e^0}\cos \left( 0 \right)\]
\[ \Rightarrow f'''(0) = 2\]
From \[(1)\] and \[(2)\], we get
\[{e^x}\sin x = 0 + \dfrac{1}{{1!}}x + \dfrac{2}{{2!}}{x^2} + \dfrac{2}{{3!}}{x^3} + ...\]
On simplification, we get
\[{e^x}\sin x = x + {x^2} + \dfrac{1}{3}{x^3} + ...\]
Therefore, the Maclaurin series for \[{e^x}\sin x\] is \[x + {x^2} + \dfrac{1}{3}{x^3} + ...\].
Note:
To find the Taylor series and Maclaurin series, the function must be infinitely times differentiable and continuous. Also, note that the Maclaurin series is just the Taylor series about the point \[0\].
The Taylor series of any function \[f\left( x \right)\] about the point \[x = a\] is given by the following expression: \[f(x) = f(a) + \dfrac{{{f{'}}(a)}}{{1!}}\left( {x - a} \right) + \dfrac{{{f{''}}(a)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{{f^{'''}}(a)}}{{3!}}{\left( {x - a} \right)^3} + ... + \dfrac{{{f^n}(a)}}{{n!}}{\left( {x - a} \right)^n} + ...\]
If we put \[a = 0\], then we will obtain the Maclaurin series.
\[ \Rightarrow f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}\left( {x - 0} \right) + \dfrac{{{f{''}}(0)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{\left( {x - 0} \right)^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{\left( {x - 0} \right)^n} + ...\]
On simplifying, we get
\[ \Rightarrow f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ...\] which is the Maclaurin series.
To calculate the Maclaurin series, we need to calculate the first, second, third up to \[{n^{th}}\] derivative of the given equation. After finding the derivative we need to calculate the value of the derivatives at zero. Putting all the values in the Maclaurin series of \[f(x)\], we will get the Maclaurin series for \[{e^x}\sin x\].
Complete step by step answer:
We have to find the Maclaurin series of \[{e^x}\sin x\].
Let \[f(x) = {e^x}\sin x - - - (1)\].
As we know that the Maclaurin series is given by \[f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ... - - - (2)\]
Putting \[x = 0\] in \[(1)\], we get
\[ \Rightarrow f(0) = {e^0}\sin \left( 0 \right)\]
On simplifying, we get
\[ \Rightarrow f(0) = 0\]
As we know, from the product rule of differentiation,
\[ \Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Differentiating \[(1)\] with respect to \[x\] using the product rule of differentiation, we get
\[ \Rightarrow f'(x) = \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right)\]
\[ \Rightarrow f'\left( x \right) = \left( {{e^x}} \right)\left( {\dfrac{d}{{dx}}\sin x} \right) + \left( {\dfrac{d}{{dx}}{e^x}} \right)\left( {\sin x} \right)\]
On simplification, we get
\[ \Rightarrow f'\left( x \right) = {e^x}\cos x + {e^x}\sin x\]
Putting \[x = 0\], we get
\[ \Rightarrow f'\left( 0 \right) = {e^0}\cos \left( 0 \right) + {e^0}\sin \left( 0 \right)\]
Putting the value of \[{e^0} = 1\], \[\cos \left( 0 \right) = 1\] and \[\sin \left( 0 \right) = 0\], we get
\[ \Rightarrow f'\left( 0 \right) = 1\]
Now, differentiating \[f'\left( x \right)\] with respect to \[x\], we get
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x}\cos x} \right) + \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right) + \left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\sin x} \right) + \left( {\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)\]
On simplification, we get
\[ \Rightarrow f''\left( x \right) = - {e^x}\sin x + {e^x}\cos x + {e^x}\cos x + {e^x}\sin x\]
On simplification, we get
\[ \Rightarrow f''\left( x \right) = 2{e^x}\cos x\]
Putting \[x = 0\], we get
\[ \Rightarrow f''\left( 0 \right) = 2{e^0}\cos \left( 0 \right)\]
\[ \Rightarrow f''\left( 0 \right) = 2\]
Now, differentiating \[f''\left( x \right)\] with respect to \[x\], we get
\[ \Rightarrow f'''\left( x \right) = 2\dfrac{d}{{dx}}\left( {{e^x}\cos x} \right)\]
\[ \Rightarrow f'''(x) = 2\left( {\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\dfrac{d}{{dx}}{e^x}} \right)\left( {\cos x} \right)} \right)\]
On simplification, we get
\[ \Rightarrow f'''(x) = - 2{e^x}\sin x + 2{e^x}\cos x\]
Putting \[x = 0\], we get
\[ \Rightarrow f'''(0) = - 2{e^0}\sin \left( 0 \right) + 2{e^0}\cos \left( 0 \right)\]
\[ \Rightarrow f'''(0) = 2\]
From \[(1)\] and \[(2)\], we get
\[{e^x}\sin x = 0 + \dfrac{1}{{1!}}x + \dfrac{2}{{2!}}{x^2} + \dfrac{2}{{3!}}{x^3} + ...\]
On simplification, we get
\[{e^x}\sin x = x + {x^2} + \dfrac{1}{3}{x^3} + ...\]
Therefore, the Maclaurin series for \[{e^x}\sin x\] is \[x + {x^2} + \dfrac{1}{3}{x^3} + ...\].
Note:
To find the Taylor series and Maclaurin series, the function must be infinitely times differentiable and continuous. Also, note that the Maclaurin series is just the Taylor series about the point \[0\].
The Taylor series of any function \[f\left( x \right)\] about the point \[x = a\] is given by the following expression: \[f(x) = f(a) + \dfrac{{{f{'}}(a)}}{{1!}}\left( {x - a} \right) + \dfrac{{{f{''}}(a)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{{f^{'''}}(a)}}{{3!}}{\left( {x - a} \right)^3} + ... + \dfrac{{{f^n}(a)}}{{n!}}{\left( {x - a} \right)^n} + ...\]
If we put \[a = 0\], then we will obtain the Maclaurin series.
\[ \Rightarrow f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}\left( {x - 0} \right) + \dfrac{{{f{''}}(0)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{\left( {x - 0} \right)^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{\left( {x - 0} \right)^n} + ...\]
On simplifying, we get
\[ \Rightarrow f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ...\] which is the Maclaurin series.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

