
How do you find the Maclaurin Series for $\sin \left( {{x^2}} \right)?$
Answer
543k+ views
Hint:First find the Maclaurin Series for $\sin x$ then put ${x^2}$ in place of the argument that is $x$. Maclaurin Series of a function $f(x)$ is given as following:
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
Where $f'(0),\;f''(0)\;{\text{and}}\;f'''(0)$ are derivatives of first, second and third order at $x = 0$ of the given function $f(x)$
Complete step by step solution:
In order to find the Maclaurin Series for $\sin ({x^2})$ we need to first
to find the Maclaurin Series of $\sin x$ and then we will replace $x\;{\text{with}}\;{x^2}$ then we will get the required Maclaurin series for $\sin ({x^2})$
Maclaurin series of a function $f(x)$ is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
So first finding the Maclaurin Series for $f(x) = \sin x$
Here $f(x) = \sin x$ so finding respective values at $x = 0$
$
f(0) = \sin (0) = 0 \\
f'(0) = \cos (0) = 1 \\
f''(0) = - \sin (0) = 0 \\
f'''(0) = - \cos (0) = - 1 \\
$
Putting these values above in order to find the Maclaurin Series expansion of $f(x) = \sin x$
$
f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ... \\
\sin x = 0 + \dfrac{1}{{1!}}(x) + \dfrac{0}{{2!}}({x^2}) + \dfrac{{( - 1)}}{{3!}}({x^3}) + ... \\
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
$
This is the Maclaurin Series of a sine function
Hence for Maclaurin Series expansion for $f(x) = \sin ({x^2})$ we will replace $x\;{\text{with}}\;{x^2}$ we will get
$
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{{\left( {{x^2}} \right)}^3}}}{{3!}} + \dfrac{{{{\left(
{{x^2}} \right)}^5}}}{{5!}} - ... \\
$
Now we will use the law of indices for brackets to simplify it,
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^{2 \times 3}}}}{{3!}} + \dfrac{{{x^{2 \times
5}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
$
So $\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ...$ is
the required Maclaurin Series for the given trigonometric function $\sin ({x^2})$
Now we should more simplify and generalize this expansion in order to understand the expansion more easily
It can be generalized with the use of sigma summation notation as follows:
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{4n + 2}}}}{{(2n + 1)!}} \times {{( -
1)}^n}} \\
$
Note: Maclaurin Series is a special case of Taylor Series, we obtain it by substituting ${x_0} = 0$ in the Taylor series. Maclaurin Series is very useful in finding the approximate values for any argument of a given function, this is to be noted that it gives approximate values instead of the absolute value, if you want absolute value then go for regular methods.
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
Where $f'(0),\;f''(0)\;{\text{and}}\;f'''(0)$ are derivatives of first, second and third order at $x = 0$ of the given function $f(x)$
Complete step by step solution:
In order to find the Maclaurin Series for $\sin ({x^2})$ we need to first
to find the Maclaurin Series of $\sin x$ and then we will replace $x\;{\text{with}}\;{x^2}$ then we will get the required Maclaurin series for $\sin ({x^2})$
Maclaurin series of a function $f(x)$ is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
So first finding the Maclaurin Series for $f(x) = \sin x$
Here $f(x) = \sin x$ so finding respective values at $x = 0$
$
f(0) = \sin (0) = 0 \\
f'(0) = \cos (0) = 1 \\
f''(0) = - \sin (0) = 0 \\
f'''(0) = - \cos (0) = - 1 \\
$
Putting these values above in order to find the Maclaurin Series expansion of $f(x) = \sin x$
$
f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ... \\
\sin x = 0 + \dfrac{1}{{1!}}(x) + \dfrac{0}{{2!}}({x^2}) + \dfrac{{( - 1)}}{{3!}}({x^3}) + ... \\
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
$
This is the Maclaurin Series of a sine function
Hence for Maclaurin Series expansion for $f(x) = \sin ({x^2})$ we will replace $x\;{\text{with}}\;{x^2}$ we will get
$
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{{\left( {{x^2}} \right)}^3}}}{{3!}} + \dfrac{{{{\left(
{{x^2}} \right)}^5}}}{{5!}} - ... \\
$
Now we will use the law of indices for brackets to simplify it,
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^{2 \times 3}}}}{{3!}} + \dfrac{{{x^{2 \times
5}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
$
So $\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ...$ is
the required Maclaurin Series for the given trigonometric function $\sin ({x^2})$
Now we should more simplify and generalize this expansion in order to understand the expansion more easily
It can be generalized with the use of sigma summation notation as follows:
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{4n + 2}}}}{{(2n + 1)!}} \times {{( -
1)}^n}} \\
$
Note: Maclaurin Series is a special case of Taylor Series, we obtain it by substituting ${x_0} = 0$ in the Taylor series. Maclaurin Series is very useful in finding the approximate values for any argument of a given function, this is to be noted that it gives approximate values instead of the absolute value, if you want absolute value then go for regular methods.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

