Answer
Verified
477.6k+ views
Hint: We will apply the formula for interior angle which is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. We can substitute the value of n for corresponding polygons and then find the interior angles. We will get it in degrees, after which we can use the conversion given by ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ to find the angle in radians.
Complete step-by-step answer:
A polygon is any shape made by a number of sides. The interior angle is an angle which is made by the sides inside that polygon. Numerically, the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. And since, the polygon is regular therefore all its interior angles will be the same.
A regular pentagon is simply a polygon with n = 5 sides having the same interior angles. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 5 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 5-2 \right)}{5} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{36}^{\text{o}}}\left( 3 \right)}{1} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( 36\times 3 \right)}^{\text{o}}} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{108}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a regular pentagon is 108 degrees.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{108}^{\text{o}}}=108\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{108}^{\text{o}}}=108\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{108}^{\text{o}}}=108\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{108}^{\text{o}}}={{\left( 108\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{108}^{\text{o}}}={{\left( 3\times \dfrac{\pi }{5} \right)}^{c}} \\
& \Rightarrow {{108}^{\text{o}}}={{\left( \dfrac{3\pi }{5} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a regular pentagon is ${{\left( \dfrac{3\pi }{5} \right)}^{c}}$. The diagram of pentagon is shown below.
Now, we will consider a heptagon. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 7 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 7-2 \right)}{7} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 5 \right)}{7} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( \dfrac{180\times 5}{7} \right)}^{\text{o}}} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( \dfrac{900}{7} \right)}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a regular heptagon is ${{\left( \dfrac{900}{7} \right)}^{\text{o}}}$ or, ${{\left( 128.5 \right)}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{\left( \dfrac{900}{7} \right)}^{\text{o}}}=\dfrac{900}{7}\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{\left( \dfrac{900}{7} \right)}^{\text{o}}}=\dfrac{900}{7}\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}=\dfrac{900}{7}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}={{\left( \dfrac{900}{7}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}={{\left( \dfrac{5}{7}\times \dfrac{\pi }{1} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}={{\left( \dfrac{5\pi }{7} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a heptagon is ${{\left( \dfrac{5\pi }{7} \right)}^{c}}$. The diagram of heptagon is shown below.
Now, we will consider an octagon. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 8 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 8-2 \right)}{8} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 6 \right)}{8} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{45}^{\text{o}}}\left( 3 \right)}{1} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( 45\times 3 \right)}^{\text{o}}} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{135}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of an octagon is ${{135}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{135}^{\text{o}}}=135\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{135}^{\text{o}}}=135\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{135}^{\text{o}}}=135\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{135}^{\text{o}}}={{\left( 135\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{135}^{\text{o}}}={{\left( 3\times \dfrac{\pi }{4} \right)}^{c}} \\
& \Rightarrow {{135}^{\text{o}}}={{\left( \dfrac{3\pi }{4} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of an octagon is ${{\left( \dfrac{3\pi }{4} \right)}^{c}}$. The diagram of octagon is shown below.
A duo decagon is a polygon with 12 sides. It is also known as dodecagon. Now, we will consider a duo decagon. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 12 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 12-2 \right)}{12} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 10 \right)}{12} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{150}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a duo decagon is ${{150}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{150}^{\text{o}}}=150\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{150}^{\text{o}}}=150\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{150}^{\text{o}}}=150\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{150}^{\text{o}}}={{\left( 150\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{150}^{\text{o}}}={{\left( 5\times \dfrac{\pi }{6} \right)}^{c}} \\
& \Rightarrow {{150}^{\text{o}}}={{\left( \dfrac{5\pi }{6} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a duo decagon is ${{\left( \dfrac{5\pi }{6} \right)}^{c}}$. The diagram of duo decagon is shown below.
Now, we will consider a regular polygon of 17 sides. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 17 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 17-2 \right)}{17} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 15 \right)}{17} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( \dfrac{2700}{17} \right)}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a regular polygon of 17 sides is ${{\left( \dfrac{2700}{17} \right)}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{\left( \dfrac{2700}{17} \right)}^{\text{o}}}=\dfrac{2700}{17}\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}=\dfrac{2700}{17}\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}=\dfrac{2700}{17}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}={{\left( \dfrac{2700}{17}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}={{\left( 15\times \dfrac{\pi }{17} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}={{\left( \dfrac{15\pi }{17} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a regular polygon of 17 sides is ${{\left( \dfrac{15\pi }{17} \right)}^{c}}$. The diagram of a regular polygon of 17 sides can be drawn with the help of above diagrams with 17 sides.
Note: The names of the polygons according to the number of sides are discussed in note. The three sides of polygon is called triangle, the 4 sides polygon is called quadrilateral (it can be square or rectangle or rhombus), polygon with 5 sides is pentagon, 6 sides polygon is hexagon, and then heptagon with 7 sides, octagon with 8 sides. It is important to know this otherwise it will be difficult to solve this question. Also, we must read the question carefully, there is a chance that we might miss that part of finding angles in degrees as well as radians.
Complete step-by-step answer:
A polygon is any shape made by a number of sides. The interior angle is an angle which is made by the sides inside that polygon. Numerically, the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. And since, the polygon is regular therefore all its interior angles will be the same.
A regular pentagon is simply a polygon with n = 5 sides having the same interior angles. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 5 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 5-2 \right)}{5} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{36}^{\text{o}}}\left( 3 \right)}{1} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( 36\times 3 \right)}^{\text{o}}} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{108}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a regular pentagon is 108 degrees.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{108}^{\text{o}}}=108\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{108}^{\text{o}}}=108\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{108}^{\text{o}}}=108\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{108}^{\text{o}}}={{\left( 108\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{108}^{\text{o}}}={{\left( 3\times \dfrac{\pi }{5} \right)}^{c}} \\
& \Rightarrow {{108}^{\text{o}}}={{\left( \dfrac{3\pi }{5} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a regular pentagon is ${{\left( \dfrac{3\pi }{5} \right)}^{c}}$. The diagram of pentagon is shown below.
Now, we will consider a heptagon. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 7 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 7-2 \right)}{7} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 5 \right)}{7} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( \dfrac{180\times 5}{7} \right)}^{\text{o}}} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( \dfrac{900}{7} \right)}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a regular heptagon is ${{\left( \dfrac{900}{7} \right)}^{\text{o}}}$ or, ${{\left( 128.5 \right)}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{\left( \dfrac{900}{7} \right)}^{\text{o}}}=\dfrac{900}{7}\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{\left( \dfrac{900}{7} \right)}^{\text{o}}}=\dfrac{900}{7}\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}=\dfrac{900}{7}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}={{\left( \dfrac{900}{7}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}={{\left( \dfrac{5}{7}\times \dfrac{\pi }{1} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{900}{7} \right)}^{\text{o}}}={{\left( \dfrac{5\pi }{7} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a heptagon is ${{\left( \dfrac{5\pi }{7} \right)}^{c}}$. The diagram of heptagon is shown below.
Now, we will consider an octagon. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 8 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 8-2 \right)}{8} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 6 \right)}{8} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{45}^{\text{o}}}\left( 3 \right)}{1} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( 45\times 3 \right)}^{\text{o}}} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{135}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of an octagon is ${{135}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{135}^{\text{o}}}=135\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{135}^{\text{o}}}=135\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{135}^{\text{o}}}=135\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{135}^{\text{o}}}={{\left( 135\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{135}^{\text{o}}}={{\left( 3\times \dfrac{\pi }{4} \right)}^{c}} \\
& \Rightarrow {{135}^{\text{o}}}={{\left( \dfrac{3\pi }{4} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of an octagon is ${{\left( \dfrac{3\pi }{4} \right)}^{c}}$. The diagram of octagon is shown below.
A duo decagon is a polygon with 12 sides. It is also known as dodecagon. Now, we will consider a duo decagon. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 12 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 12-2 \right)}{12} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 10 \right)}{12} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{150}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a duo decagon is ${{150}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{150}^{\text{o}}}=150\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{150}^{\text{o}}}=150\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{150}^{\text{o}}}=150\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{150}^{\text{o}}}={{\left( 150\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{150}^{\text{o}}}={{\left( 5\times \dfrac{\pi }{6} \right)}^{c}} \\
& \Rightarrow {{150}^{\text{o}}}={{\left( \dfrac{5\pi }{6} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a duo decagon is ${{\left( \dfrac{5\pi }{6} \right)}^{c}}$. The diagram of duo decagon is shown below.
Now, we will consider a regular polygon of 17 sides. Now, we will apply the formula for interior angle is given by $\dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}$ where n is called the number of sides of a regular polygon. Since, we have n = 17 thus, we get
$\begin{align}
& \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 17-2 \right)}{17} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}=\dfrac{{{180}^{\text{o}}}\left( 15 \right)}{17} \\
& \Rightarrow \dfrac{{{180}^{\text{o}}}\left( n-2 \right)}{n}={{\left( \dfrac{2700}{17} \right)}^{\text{o}}} \\
\end{align}$
Clearly, every interior angle of a regular polygon of 17 sides is ${{\left( \dfrac{2700}{17} \right)}^{\text{o}}}$.
Now, we will convert it into radians by using the formula given by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$ or ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$. As ${{\left( \dfrac{2700}{17} \right)}^{\text{o}}}=\dfrac{2700}{17}\times {{\left( 1 \right)}^{\text{o}}}$. Therefore, by using the formula ${{\left( 1 \right)}^{\text{o}}}={{\left( \dfrac{\pi }{180} \right)}^{c}}$ we have,
$\begin{align}
& {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}=\dfrac{2700}{17}\times {{\left( 1 \right)}^{\text{o}}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}=\dfrac{2700}{17}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}={{\left( \dfrac{2700}{17}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}={{\left( 15\times \dfrac{\pi }{17} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{2700}{17} \right)}^{\text{o}}}={{\left( \dfrac{15\pi }{17} \right)}^{c}} \\
\end{align}$
And clearly, every interior angle of a regular polygon of 17 sides is ${{\left( \dfrac{15\pi }{17} \right)}^{c}}$. The diagram of a regular polygon of 17 sides can be drawn with the help of above diagrams with 17 sides.
Note: The names of the polygons according to the number of sides are discussed in note. The three sides of polygon is called triangle, the 4 sides polygon is called quadrilateral (it can be square or rectangle or rhombus), polygon with 5 sides is pentagon, 6 sides polygon is hexagon, and then heptagon with 7 sides, octagon with 8 sides. It is important to know this otherwise it will be difficult to solve this question. Also, we must read the question carefully, there is a chance that we might miss that part of finding angles in degrees as well as radians.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE