Answer
Verified
426.6k+ views
Hint: First of all, we will find the first six multiples of $5$ . Then, we will apply the formula of arithmetic mean on the first six multiples of $5$ . Then, by simplifying further we can evaluate the mean of the first six multiples of $5$.
Formula used: The arithmetic mean of ungrouped data: If ${x_1},{x_2},{x_3},...,{x_n}$ are $n$ observations of a variable $X$ , then the arithmetic mean is denoted by $\bar X$ and is defined as $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$.
Complete step by step solution:
Firstly, we know that a multiple of a natural number is obtained by multiplying that number by any whole number.
Now, we need to find the first six multiples of $5$, which are
Multiples of $5$ are $5 \times 0$ , $5 \times 1$ , $5 \times 2$ , $5 \times 3$ , $5 \times 4$ , $5 \times 5$ , $5 \times 6$ , …
i.e. $0$ , $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$ , …
But, we will consider non-zero multiples only, so, we have
First six multiples of $\;5$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, as we need to find the mean of the first six multiples of $5$ .
So, we take it as
$X$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, let $\bar X$ be the arithmetic mean of the observations.
As we know that, $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$\Rightarrow \bar X = \dfrac{{5 + 10 + 15 + 20 + 25 + 30}}{6}$
$\Rightarrow \bar X = \dfrac{{105}}{6}$
Simplifying on R.H.S., we get
$\Rightarrow \bar X = 17.5$
The mean of the first six multiples of $5$ is $17.5$.
Note: Arithmetic mean is also called simply mean. The arithmetic mean of a set of observations is defined as the sum of all observations divided by the total number of observations. The method of finding the arithmetic mean depends on the kind of data that is given whether the data is grouped or ungrouped.
Formula used: The arithmetic mean of ungrouped data: If ${x_1},{x_2},{x_3},...,{x_n}$ are $n$ observations of a variable $X$ , then the arithmetic mean is denoted by $\bar X$ and is defined as $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$.
Complete step by step solution:
Firstly, we know that a multiple of a natural number is obtained by multiplying that number by any whole number.
Now, we need to find the first six multiples of $5$, which are
Multiples of $5$ are $5 \times 0$ , $5 \times 1$ , $5 \times 2$ , $5 \times 3$ , $5 \times 4$ , $5 \times 5$ , $5 \times 6$ , …
i.e. $0$ , $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$ , …
But, we will consider non-zero multiples only, so, we have
First six multiples of $\;5$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, as we need to find the mean of the first six multiples of $5$ .
So, we take it as
$X$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, let $\bar X$ be the arithmetic mean of the observations.
As we know that, $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$\Rightarrow \bar X = \dfrac{{5 + 10 + 15 + 20 + 25 + 30}}{6}$
$\Rightarrow \bar X = \dfrac{{105}}{6}$
Simplifying on R.H.S., we get
$\Rightarrow \bar X = 17.5$
The mean of the first six multiples of $5$ is $17.5$.
Note: Arithmetic mean is also called simply mean. The arithmetic mean of a set of observations is defined as the sum of all observations divided by the total number of observations. The method of finding the arithmetic mean depends on the kind of data that is given whether the data is grouped or ungrouped.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE