Answer
Verified
468.3k+ views
Hint: The median is the value of the middle-most observation(s). It is the measure of central tendency.
The median is that value of the given number of observations, which divides it into exactly two parts.
There are two possible cases:
When the number of observations $\left( n \right)$ is odd, the median is the value of the \[\mathop {\left( {\dfrac{{n + 1}}{2}} \right)}\nolimits^{th} \] observation.
For example, if n = 13, the value of the \[\mathop {\left( {\dfrac{{n + 1}}{2}} \right)}\nolimits^{th} \]observation will be the median.
When the number of observations $\left( n \right)$ is even, the median is the mean of the \[\mathop {\left( {\dfrac{n}{2}} \right)}\nolimits^{th} \] and the \[\mathop {\left( {\dfrac{n}{2} + 1} \right)}\nolimits^{th} \] observation.
For example, if n = 16, the mean of the values of the \[\mathop {\left( {\dfrac{{16}}{2}} \right)}\nolimits^{th} \]and the \[\mathop {\left( {\dfrac{{16}}{2} + 1} \right)}\nolimits^{th} \]observation, i.e., the mean of the values 8th and 9th observations will be the median.
Complete step-by-step answer:
Step 1: State the given data:
Whole numbers are the natural numbers including 0.
Therefore, the first fifty whole numbers are: 0, 1, 2, 3, ….., 49.
The total number of observations, $n = 50$ is even.
We know,
The median of the given data is the mean of the \[\mathop {\left( {\dfrac{n}{2}} \right)}\nolimits^{th} \] and the \[\mathop {\left( {\dfrac{n}{2} + 1} \right)}\nolimits^{th} \] observation.
i.e. the mean of the \[\mathop {\left( {\dfrac{{50}}{2}} \right)}\nolimits^{th} \] and the \[\mathop {\left( {\dfrac{{50}}{2} + 1} \right)}\nolimits^{th} \] observation
$ \Rightarrow $ The mean of the \[\mathop {\left( {25} \right)}\nolimits^{th} \] and the \[\mathop {\left( {26} \right)}\nolimits^{th} \] observation is the median.
Step 2: Find the \[\mathop {\left( {25} \right)}\nolimits^{th} \] and the \[\mathop {\left( {26} \right)}\nolimits^{th} \] values of observation.
The given data: 0, 1, 2, ….., 49 forms an AP, where the first term, $\mathop a\nolimits_1 = a = 0$ and common difference d = 1
Thus using the general form of AP:
$ \Rightarrow \mathop a\nolimits_n = a + \left( {n - 1} \right)d$
\[\because {\text{ }}\mathop {\left( {25} \right)}\nolimits^{th} \] observation is:
\[
\Rightarrow \mathop a\nolimits_{25} = a + \left( {25 - 1} \right)d \\
\Rightarrow \mathop a\nolimits_{25} = 0 + \left( {24} \right)1 \\
\Rightarrow \mathop a\nolimits_{25} = 24 \\
\]
\[\because {\text{ }}\mathop {\left( {26} \right)}\nolimits^{th} \] observation is:
\[
\Rightarrow \mathop a\nolimits_{26} = a + \left( {26 - 1} \right)d \\
\Rightarrow \mathop a\nolimits_{26} = 0 + \left( {25} \right)1 \\
\Rightarrow \mathop a\nolimits_{26} = 25 \\
\]
Step 3: Calculation of median
It is known The median of the given data is the mean of the \[\mathop {\left( {25} \right)}\nolimits^{th} \] and the \[\mathop {\left( {26} \right)}\nolimits^{th} \] observation.
i.e. mean of 24 and 25
$
\Rightarrow {\text{ }}\dfrac{{25 + 26}}{2} \\
\Rightarrow {\text{ }}\dfrac{{51}}{2} \\
\Rightarrow {\text{ }}25.5 \\
$
Final answer: The median of the first fifty whole numbers is 25.5.
Note: The data must be arranged in ascending or descending order for the calculation of the median. If it is not so then arrange it before calculating the median.
The above state formula for calculating the median is only for ungrouped data.
The other two measures of central tendency for ungrouped data are:
Mean: It is found by adding all the values of the observations and dividing it by the total number of observations.
So, mean $ = \dfrac{{{\text{sum of observations}}}}{{{\text{total number of observations}}}}$
Mode: The mode is the most frequently occurring observation.
The median is that value of the given number of observations, which divides it into exactly two parts.
There are two possible cases:
When the number of observations $\left( n \right)$ is odd, the median is the value of the \[\mathop {\left( {\dfrac{{n + 1}}{2}} \right)}\nolimits^{th} \] observation.
For example, if n = 13, the value of the \[\mathop {\left( {\dfrac{{n + 1}}{2}} \right)}\nolimits^{th} \]observation will be the median.
When the number of observations $\left( n \right)$ is even, the median is the mean of the \[\mathop {\left( {\dfrac{n}{2}} \right)}\nolimits^{th} \] and the \[\mathop {\left( {\dfrac{n}{2} + 1} \right)}\nolimits^{th} \] observation.
For example, if n = 16, the mean of the values of the \[\mathop {\left( {\dfrac{{16}}{2}} \right)}\nolimits^{th} \]and the \[\mathop {\left( {\dfrac{{16}}{2} + 1} \right)}\nolimits^{th} \]observation, i.e., the mean of the values 8th and 9th observations will be the median.
Complete step-by-step answer:
Step 1: State the given data:
Whole numbers are the natural numbers including 0.
Therefore, the first fifty whole numbers are: 0, 1, 2, 3, ….., 49.
The total number of observations, $n = 50$ is even.
We know,
The median of the given data is the mean of the \[\mathop {\left( {\dfrac{n}{2}} \right)}\nolimits^{th} \] and the \[\mathop {\left( {\dfrac{n}{2} + 1} \right)}\nolimits^{th} \] observation.
i.e. the mean of the \[\mathop {\left( {\dfrac{{50}}{2}} \right)}\nolimits^{th} \] and the \[\mathop {\left( {\dfrac{{50}}{2} + 1} \right)}\nolimits^{th} \] observation
$ \Rightarrow $ The mean of the \[\mathop {\left( {25} \right)}\nolimits^{th} \] and the \[\mathop {\left( {26} \right)}\nolimits^{th} \] observation is the median.
Step 2: Find the \[\mathop {\left( {25} \right)}\nolimits^{th} \] and the \[\mathop {\left( {26} \right)}\nolimits^{th} \] values of observation.
The given data: 0, 1, 2, ….., 49 forms an AP, where the first term, $\mathop a\nolimits_1 = a = 0$ and common difference d = 1
Thus using the general form of AP:
$ \Rightarrow \mathop a\nolimits_n = a + \left( {n - 1} \right)d$
\[\because {\text{ }}\mathop {\left( {25} \right)}\nolimits^{th} \] observation is:
\[
\Rightarrow \mathop a\nolimits_{25} = a + \left( {25 - 1} \right)d \\
\Rightarrow \mathop a\nolimits_{25} = 0 + \left( {24} \right)1 \\
\Rightarrow \mathop a\nolimits_{25} = 24 \\
\]
\[\because {\text{ }}\mathop {\left( {26} \right)}\nolimits^{th} \] observation is:
\[
\Rightarrow \mathop a\nolimits_{26} = a + \left( {26 - 1} \right)d \\
\Rightarrow \mathop a\nolimits_{26} = 0 + \left( {25} \right)1 \\
\Rightarrow \mathop a\nolimits_{26} = 25 \\
\]
Step 3: Calculation of median
It is known The median of the given data is the mean of the \[\mathop {\left( {25} \right)}\nolimits^{th} \] and the \[\mathop {\left( {26} \right)}\nolimits^{th} \] observation.
i.e. mean of 24 and 25
$
\Rightarrow {\text{ }}\dfrac{{25 + 26}}{2} \\
\Rightarrow {\text{ }}\dfrac{{51}}{2} \\
\Rightarrow {\text{ }}25.5 \\
$
Final answer: The median of the first fifty whole numbers is 25.5.
Note: The data must be arranged in ascending or descending order for the calculation of the median. If it is not so then arrange it before calculating the median.
The above state formula for calculating the median is only for ungrouped data.
The other two measures of central tendency for ungrouped data are:
Mean: It is found by adding all the values of the observations and dividing it by the total number of observations.
So, mean $ = \dfrac{{{\text{sum of observations}}}}{{{\text{total number of observations}}}}$
Mode: The mode is the most frequently occurring observation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE