Answer
Verified
394.8k+ views
Hint: Here, we have to find the mode of the given data set. Now, mode is the number that occurs most frequently in the given data set. That means to find the mode of the given data set, we need to find out which number is occurring the most number of times in the given data set.
Complete step by step solution:
In this question, we are given a set of 12 numbers and we need to find its mode.
Given numbers: 9, 0, 2, 8, 5, 3, 5, 4, 1, 5, 2, 7
Now, first of all, let us see what mode is.
Mode is the one of the three measures of central tendency. The other two are Median and Mean.
Mean is the average of the given numbers, median is the middle number between the given numbers and the mode is the number that occurs the most number of times in the data set.
That means, to find the mode of the given numbers, we need to find the number that occurs the most in the given data set. Let us see the occurrence of each number in this data set.
0 – 1 time
1 – 1 time
2 – 2 time
3 – 1 time
4 – 1 time
5 – 3 times
7 – 1 time
8 – 1 time
9 – 1 time
Here, we can see that 5 occurs 3 times which is the most number of times in the given data set. Hence, we can conclude that the mode of the given numbers is 5.
Note that there can be more than 1 mode of a given data set.
So, the correct answer is “5”.
Note: Here, we can also find the mean and the median of the given data set.
Mean is the average of the numbers, so it can be given by adding all the numbers and dividing by total number of numbers.
\[
\Rightarrow Mean\left( {\overline x } \right) = \dfrac{{\sum x }}{n} \\
\Rightarrow Mean\left( {\overline x } \right) = \dfrac{{9 + 0 + 2 + 8 + 5 + 3 + 5 + 4 + 1 + 5 + 2 + 7}}{{12}} \\
\Rightarrow Mean\left( {\overline x } \right) = \dfrac{{51}}{{12}} \\
\Rightarrow Mean\left( {\overline x } \right) = 4.25 \;
\]
Now, median is the middle number between the given numbers. The median of a given data set if total number of numbers is even is given by
$
\Rightarrow Median = \dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2} \\
\Rightarrow Median = \dfrac{{{6^{th}}observation + {7^{th}}observation}}{2} \\
\Rightarrow Median = \dfrac{{3 + 5}}{2} \\
\Rightarrow Median = \dfrac{8}{2} \\
\Rightarrow Median = 4 \;
$
Complete step by step solution:
In this question, we are given a set of 12 numbers and we need to find its mode.
Given numbers: 9, 0, 2, 8, 5, 3, 5, 4, 1, 5, 2, 7
Now, first of all, let us see what mode is.
Mode is the one of the three measures of central tendency. The other two are Median and Mean.
Mean is the average of the given numbers, median is the middle number between the given numbers and the mode is the number that occurs the most number of times in the data set.
That means, to find the mode of the given numbers, we need to find the number that occurs the most in the given data set. Let us see the occurrence of each number in this data set.
0 – 1 time
1 – 1 time
2 – 2 time
3 – 1 time
4 – 1 time
5 – 3 times
7 – 1 time
8 – 1 time
9 – 1 time
Here, we can see that 5 occurs 3 times which is the most number of times in the given data set. Hence, we can conclude that the mode of the given numbers is 5.
Note that there can be more than 1 mode of a given data set.
So, the correct answer is “5”.
Note: Here, we can also find the mean and the median of the given data set.
Mean is the average of the numbers, so it can be given by adding all the numbers and dividing by total number of numbers.
\[
\Rightarrow Mean\left( {\overline x } \right) = \dfrac{{\sum x }}{n} \\
\Rightarrow Mean\left( {\overline x } \right) = \dfrac{{9 + 0 + 2 + 8 + 5 + 3 + 5 + 4 + 1 + 5 + 2 + 7}}{{12}} \\
\Rightarrow Mean\left( {\overline x } \right) = \dfrac{{51}}{{12}} \\
\Rightarrow Mean\left( {\overline x } \right) = 4.25 \;
\]
Now, median is the middle number between the given numbers. The median of a given data set if total number of numbers is even is given by
$
\Rightarrow Median = \dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2} \\
\Rightarrow Median = \dfrac{{{6^{th}}observation + {7^{th}}observation}}{2} \\
\Rightarrow Median = \dfrac{{3 + 5}}{2} \\
\Rightarrow Median = \dfrac{8}{2} \\
\Rightarrow Median = 4 \;
$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE