Answer
Verified
429.9k+ views
Hint: The letters present in ANNIHILATION are A, N, I, H, L, O and T. The number of A in the word is 2, number of N is 3, Number of I is 3 and rest of letters occur only once first we will write the number of possibilities to write 4 as sum of 2 or more numbers and then find the total number of permutations possible.
Complete step by step solution:
Let’s note down all possibilities to write 4 as sum of 2 or more integers
1. 1+ 1+ 1+ 1 = 4
2. 1+ 1+ 2 = 4
3. 2+ 2 = 4
4. 1+ 3 = 4
In the first condition we have to choose 4 different letters and arrange them, so the number of possibilities to choose 4 numbers out of 7 and arrange them is equal to ${}^{7}{{C}_{4}}\times 4!=840$
In the second condition we have to choose 2 different and 2 same number, we know that A, N, I occur more than once so we can choose one of them so total possibilities will be ${}^{3}{{C}_{1}}\times {}^{6}{{C}_{2}}\times \dfrac{4!}{2!}=540$
In the third case we have to choose a pair of same number, so we have to choose from A, N, I
So the number of total possibilities will be ${}^{3}{{C}_{2}}\times \dfrac{4!}{2!2!}=18$
In fourth case we have to choose 3 same number, N and I occur thrice so total possibilities will be ${}^{2}{{C}_{1}}\times {}^{6}{{C}_{1}}\times \dfrac{4!}{3!}=48$
So the total number of possibilities will be equal to 840+ 540+ 18+ 48 = 1446.
Note:
These types of problems can be solved by taking different cases because we do not know which letter will come how many times and we have to arrange the multiple occurring letters so it can only be solved by taking cases.
Complete step by step solution:
Let’s note down all possibilities to write 4 as sum of 2 or more integers
1. 1+ 1+ 1+ 1 = 4
2. 1+ 1+ 2 = 4
3. 2+ 2 = 4
4. 1+ 3 = 4
In the first condition we have to choose 4 different letters and arrange them, so the number of possibilities to choose 4 numbers out of 7 and arrange them is equal to ${}^{7}{{C}_{4}}\times 4!=840$
In the second condition we have to choose 2 different and 2 same number, we know that A, N, I occur more than once so we can choose one of them so total possibilities will be ${}^{3}{{C}_{1}}\times {}^{6}{{C}_{2}}\times \dfrac{4!}{2!}=540$
In the third case we have to choose a pair of same number, so we have to choose from A, N, I
So the number of total possibilities will be ${}^{3}{{C}_{2}}\times \dfrac{4!}{2!2!}=18$
In fourth case we have to choose 3 same number, N and I occur thrice so total possibilities will be ${}^{2}{{C}_{1}}\times {}^{6}{{C}_{1}}\times \dfrac{4!}{3!}=48$
So the total number of possibilities will be equal to 840+ 540+ 18+ 48 = 1446.
Note:
These types of problems can be solved by taking different cases because we do not know which letter will come how many times and we have to arrange the multiple occurring letters so it can only be solved by taking cases.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE