Find the number of divisors of 8064.
Answer
Verified
508.2k+ views
Hint: Apply prime factorisation to find the prime factors of the given number and then apply formula to find the number of divisors of the given number.
The given number is 8064.
First we find all the prime factors of the given number.
Prime factors are numbers which are divisible by itself, that is, it has ‘one’ and itself as the factors.
Now let’s find all the prime factors of 8064 using prime factorisation method
So, 8064 can be written as,
$8064=2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 7$
By grouping, we get
$8064={{2}^{7}}\times {{3}^{7}}\times {{7}^{1}}.........\left( 1 \right)$
Now to find the number of divisors we will use the formula,
$d\left( n \right)=\left( p+1 \right)\times \left( q+1 \right)\times \left( r+1 \right)$
Where ‘n’ is the number and ‘p, q, r’ are the powers of prime factors of the numbers or they are the exponents of prime factorisation.
Such that a number can be represented as,
$n={{a}^{p}}\times {{b}^{q}}\times {{c}^{r}}.........\left( 2 \right)$
Where ‘a, b, c’ are prime factors of ‘n’
Now applying this formula in our problem, we get
Comparing equation (1) and (2), we get
P=7, q=2, r=1
So the number of divisors will be
$d\left( 8064 \right)=\left( 7+1 \right)\times \left( 2+1 \right)\times \left( 1+1 \right)$
Solving we get
$\begin{align}
& d\left( 8064 \right)=8\times 3\times 2 \\
& \Rightarrow d\left( 8064 \right)=48 \\
\end{align}$
So the number of divisors of 8064 is 48.
Note: Student forgets to add one in the divisor formula i.e.,
$d\left( n \right)=\left( p+1 \right)\times \left( q+1 \right)\times \left( r+1 \right)........\left( A \right)$
Will be mistakenly written as,
$d\left( n \right)=p\times q\times $$r........\left( B \right)$
The answer we get in both cases does not match and the student will end up in the wrong answer if he uses formula (B) instead of (A).
The given number is 8064.
First we find all the prime factors of the given number.
Prime factors are numbers which are divisible by itself, that is, it has ‘one’ and itself as the factors.
Now let’s find all the prime factors of 8064 using prime factorisation method
So, 8064 can be written as,
$8064=2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 7$
By grouping, we get
$8064={{2}^{7}}\times {{3}^{7}}\times {{7}^{1}}.........\left( 1 \right)$
Now to find the number of divisors we will use the formula,
$d\left( n \right)=\left( p+1 \right)\times \left( q+1 \right)\times \left( r+1 \right)$
Where ‘n’ is the number and ‘p, q, r’ are the powers of prime factors of the numbers or they are the exponents of prime factorisation.
Such that a number can be represented as,
$n={{a}^{p}}\times {{b}^{q}}\times {{c}^{r}}.........\left( 2 \right)$
Where ‘a, b, c’ are prime factors of ‘n’
Now applying this formula in our problem, we get
Comparing equation (1) and (2), we get
P=7, q=2, r=1
So the number of divisors will be
$d\left( 8064 \right)=\left( 7+1 \right)\times \left( 2+1 \right)\times \left( 1+1 \right)$
Solving we get
$\begin{align}
& d\left( 8064 \right)=8\times 3\times 2 \\
& \Rightarrow d\left( 8064 \right)=48 \\
\end{align}$
So the number of divisors of 8064 is 48.
Note: Student forgets to add one in the divisor formula i.e.,
$d\left( n \right)=\left( p+1 \right)\times \left( q+1 \right)\times \left( r+1 \right)........\left( A \right)$
Will be mistakenly written as,
$d\left( n \right)=p\times q\times $$r........\left( B \right)$
The answer we get in both cases does not match and the student will end up in the wrong answer if he uses formula (B) instead of (A).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE