Answer
Verified
468.6k+ views
Hint: Take LCM of the given fractions and solve to form an equation. Add the square of $2007$ in the equation on both sides and simplify. Then find the factors of ${2007^2}$ because the number of solutions of the equation will be equal to the number of factors.
Complete step-by-step answer:
We are given that,
$ \Rightarrow $ $\dfrac{1}{{\text{x}}} + \dfrac{1}{{\text{y}}} = \dfrac{1}{{2007}}$
We have to find the number of positive integers (x, y) such that ${\text{x < y}}$
So first solve the given fractions. On taking LCM, we get
$ \Rightarrow \dfrac{{{\text{x + y}}}}{{{\text{xy}}}} = \dfrac{1}{{2007}}$
On cross multiplication, we get
$ \Rightarrow {\text{xy = 2007}}\left( {{\text{x}} + {\text{y}}} \right) \Rightarrow {\text{xy}} - {\text{2007}}\left( {{\text{x}} + {\text{y}}} \right) = 0$
Now, to find the values of x and y , we can add the ${2007^2}$ on both sides so we can make factors of x and y.
$ \Rightarrow {\text{xy}} - {\text{2007}}\left( {{\text{x}} + {\text{y}}} \right) + {2007^2} = {2007^2}$
On simplifying we get,
$
\Rightarrow {\text{xy}} - 2007{\text{x}} - 2007{\text{y}} + {2007^2} = {2007^2} \\
\Rightarrow {\text{x}}\left( {{\text{y}} - 2007} \right) - 2007\left( {{\text{y}} - 2007} \right) = {2007^2} \\
\Rightarrow \left( {{\text{x}} - 2007} \right)\left( {{\text{y - }}2007} \right) = {2007^2} \\
$
Now we can take A=${\text{x}} - 2007$ and B=${\text{y}} - 2007$ , then the equation becomes
$ \Rightarrow {\text{AB = }}{2007^2}$
Now from the equation it is clear that the number of solutions of this equation will be equal to the number of factors of ${2007^2}$.So we can write $2007 = 9 \times 223$ $ = {3^2} \times 223$ .It can’t be further simplified as $3$ and $223$ are both prime numbers.
Then we can write ${2007^2}$$ = {3^4} \times {223^2}$
Here, we are finding the number of factors in the form of prime factors hence,
$ \Rightarrow {\text{number of factor = }}\left( {4 + 1} \right)\left( {2 + 1} \right) = 5 \times 3 = 15$
This is the total number of factors of ${2007^2}$.Now in all the $15$ cases there will be only one case when A=B=$2007$ as $\left\{ {{\text{A}} \times {\text{B = 200}}{{\text{7}}^2}} \right\}$ .So in other 14 case either A>B or B>A so there will be 7 cases where $A>B$ which means $x>y$.
So, the number of positive integers of pairs (x, y) such that ${\text{x < y}}$ will be 7.
Note: Here, we have used the formula for the number of factors in the form of prime factors which is-
The number of divisor or factors of a number “n” in the form of prime factors \[ \Rightarrow {\text{a}}_1^{{{\text{P}}_1}}.{\text{a}}_2^{{{\text{P}}_2}}...{\text{a}}_{\text{n}}^{{\text{Pn}}} = \left( {{{\text{P}}_1} + 1} \right)\left( {{{\text{P}}_2} + 1} \right)...\left( {{{\text{P}}_{\text{n}}} + 1} \right)\]
Complete step-by-step answer:
We are given that,
$ \Rightarrow $ $\dfrac{1}{{\text{x}}} + \dfrac{1}{{\text{y}}} = \dfrac{1}{{2007}}$
We have to find the number of positive integers (x, y) such that ${\text{x < y}}$
So first solve the given fractions. On taking LCM, we get
$ \Rightarrow \dfrac{{{\text{x + y}}}}{{{\text{xy}}}} = \dfrac{1}{{2007}}$
On cross multiplication, we get
$ \Rightarrow {\text{xy = 2007}}\left( {{\text{x}} + {\text{y}}} \right) \Rightarrow {\text{xy}} - {\text{2007}}\left( {{\text{x}} + {\text{y}}} \right) = 0$
Now, to find the values of x and y , we can add the ${2007^2}$ on both sides so we can make factors of x and y.
$ \Rightarrow {\text{xy}} - {\text{2007}}\left( {{\text{x}} + {\text{y}}} \right) + {2007^2} = {2007^2}$
On simplifying we get,
$
\Rightarrow {\text{xy}} - 2007{\text{x}} - 2007{\text{y}} + {2007^2} = {2007^2} \\
\Rightarrow {\text{x}}\left( {{\text{y}} - 2007} \right) - 2007\left( {{\text{y}} - 2007} \right) = {2007^2} \\
\Rightarrow \left( {{\text{x}} - 2007} \right)\left( {{\text{y - }}2007} \right) = {2007^2} \\
$
Now we can take A=${\text{x}} - 2007$ and B=${\text{y}} - 2007$ , then the equation becomes
$ \Rightarrow {\text{AB = }}{2007^2}$
Now from the equation it is clear that the number of solutions of this equation will be equal to the number of factors of ${2007^2}$.So we can write $2007 = 9 \times 223$ $ = {3^2} \times 223$ .It can’t be further simplified as $3$ and $223$ are both prime numbers.
Then we can write ${2007^2}$$ = {3^4} \times {223^2}$
Here, we are finding the number of factors in the form of prime factors hence,
$ \Rightarrow {\text{number of factor = }}\left( {4 + 1} \right)\left( {2 + 1} \right) = 5 \times 3 = 15$
This is the total number of factors of ${2007^2}$.Now in all the $15$ cases there will be only one case when A=B=$2007$ as $\left\{ {{\text{A}} \times {\text{B = 200}}{{\text{7}}^2}} \right\}$ .So in other 14 case either A>B or B>A so there will be 7 cases where $A>B$ which means $x>y$.
So, the number of positive integers of pairs (x, y) such that ${\text{x < y}}$ will be 7.
Note: Here, we have used the formula for the number of factors in the form of prime factors which is-
The number of divisor or factors of a number “n” in the form of prime factors \[ \Rightarrow {\text{a}}_1^{{{\text{P}}_1}}.{\text{a}}_2^{{{\text{P}}_2}}...{\text{a}}_{\text{n}}^{{\text{Pn}}} = \left( {{{\text{P}}_1} + 1} \right)\left( {{{\text{P}}_2} + 1} \right)...\left( {{{\text{P}}_{\text{n}}} + 1} \right)\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE