Answer
Verified
469.8k+ views
Hint: According to the Bronsted-Lowry concept of acids and bases, any species donating proton (${{H}^{+}}$ ion) to other species are acids whereas Lewis concept defines acids as the species which can accept a pair of electrons from other molecules.
Complete answer:
Proton donor acids can donate one or more ${{H}^{+}}$ ions to other molecules (bases). When proton donor acids are dissolved in water, they dissociate to give ${{H}^{+}}$ ions. Hydration of protons by water molecules then forms hydronium ions.
\[\begin{align}
& HA\to {{H}^{+}}+{{A}^{-}} \\
& {{H}^{+}}+{{H}_{2}}O\to {{H}_{3}}{{O}^{+}} \\
\end{align}\]
Now let us examine all the compounds given one by one to find out the total number of proton donor acids.
- \[B{{(OH)}_{3}}\]: Orthoboric acid or boric acid. It is a monobasic Lewis acid. it does release a proton but rather accepts a pair of electrons. It belongs to the class of aprotic acids.
- $Mg{{(OH)}_{2}}$: Magnesium hydroxide is not an acid but a base. It is a weaker base than alkali metal bases like NaOH, KOH, etc. $Mg{{(OH)}_{2}}$ is a base according to the Bronsted-Lowry concept of bases. When $Mg{{(OH)}_{2}}$ is dissolved in water, it dissociates into $M{{g}^{2+}}$and $O{{H}^{-}}$ ions.
$Mg{{(OH)}_{2}}\to M{{g}^{2+}}(aq)+2O{{H}^{-}}$
- $Si{{(OH)}_{4}}$: Silicic acid or orthosilicic acid is a weak acid. Although it is a weak acid it gives a proton and hence, is a proton donor acid.
$Si{{(OH)}_{4}}+{{H}_{2}}O\to Si{{(OH)}_{3}}{{O}^{-}}+{{H}^{+}}$
- $S{{O}_{2}}{{(OH)}_{2}}$: It is sulphuric acid i.e., ${{H}_{2}}S{{O}_{4}}$. Sulphuric acid is a very strong acid. It ionizes first into ${{H}^{+}}$and $HSO_{4}^{-}$. Then, ${{H}^{+}}$ ions are surrounded by water molecules to form hydronium ions.
$\begin{align}
& {{H}_{2}}S{{O}_{4}}\to {{H}^{+}}+HSO_{4}^{-} \\
& {{H}^{+}}+{{H}_{2}}O\to {{H}_{3}}{{O}^{+}} \\
\end{align}$
$HSO_{4}^{-}$ further dissociates to give ${{H}^{+}}$ and $SO_{4}^{2-}$ ions. The overall reaction of sulphuric acid in water is given as:
\[{{H}_{2}}S{{O}_{4}}+2{{H}_{2}}O\to 2{{H}_{3}}{{O}^{+}}+SO_{4}^{2-}\]
- \[Ba{{(OH)}_{2}}\] : Barium hydroxide solution is a strong base. It completely dissociates in water into $B{{a}^{2+}}$ and \[O{{H}^{-}}\] ions. Hence, it is a Bronsted-Lowry base.
\[Ba{{(OH)}_{2}}\to B{{a}^{2+}}+2O{{H}^{-}}\]
The proton donor acids are sulphuric acid ($S{{O}_{2}}{{(OH)}_{2}}$) and silicic acid ($Si{{(OH)}_{4}}$).
Therefore, the number of proton donor acids is two.
Note:
Note that \[B{{(OH)}_{3}}\] is also an acid but it is a Lewis acid. It is electron deficient in nature as boron has only six electrons in its outermost shell. Therefore, when dissolved in water, it accepts a pair of electrons from water in the form of \[O{{H}^{-}}\] ion.
Complete answer:
Proton donor acids can donate one or more ${{H}^{+}}$ ions to other molecules (bases). When proton donor acids are dissolved in water, they dissociate to give ${{H}^{+}}$ ions. Hydration of protons by water molecules then forms hydronium ions.
\[\begin{align}
& HA\to {{H}^{+}}+{{A}^{-}} \\
& {{H}^{+}}+{{H}_{2}}O\to {{H}_{3}}{{O}^{+}} \\
\end{align}\]
Now let us examine all the compounds given one by one to find out the total number of proton donor acids.
- \[B{{(OH)}_{3}}\]: Orthoboric acid or boric acid. It is a monobasic Lewis acid. it does release a proton but rather accepts a pair of electrons. It belongs to the class of aprotic acids.
- $Mg{{(OH)}_{2}}$: Magnesium hydroxide is not an acid but a base. It is a weaker base than alkali metal bases like NaOH, KOH, etc. $Mg{{(OH)}_{2}}$ is a base according to the Bronsted-Lowry concept of bases. When $Mg{{(OH)}_{2}}$ is dissolved in water, it dissociates into $M{{g}^{2+}}$and $O{{H}^{-}}$ ions.
$Mg{{(OH)}_{2}}\to M{{g}^{2+}}(aq)+2O{{H}^{-}}$
- $Si{{(OH)}_{4}}$: Silicic acid or orthosilicic acid is a weak acid. Although it is a weak acid it gives a proton and hence, is a proton donor acid.
$Si{{(OH)}_{4}}+{{H}_{2}}O\to Si{{(OH)}_{3}}{{O}^{-}}+{{H}^{+}}$
- $S{{O}_{2}}{{(OH)}_{2}}$: It is sulphuric acid i.e., ${{H}_{2}}S{{O}_{4}}$. Sulphuric acid is a very strong acid. It ionizes first into ${{H}^{+}}$and $HSO_{4}^{-}$. Then, ${{H}^{+}}$ ions are surrounded by water molecules to form hydronium ions.
$\begin{align}
& {{H}_{2}}S{{O}_{4}}\to {{H}^{+}}+HSO_{4}^{-} \\
& {{H}^{+}}+{{H}_{2}}O\to {{H}_{3}}{{O}^{+}} \\
\end{align}$
$HSO_{4}^{-}$ further dissociates to give ${{H}^{+}}$ and $SO_{4}^{2-}$ ions. The overall reaction of sulphuric acid in water is given as:
\[{{H}_{2}}S{{O}_{4}}+2{{H}_{2}}O\to 2{{H}_{3}}{{O}^{+}}+SO_{4}^{2-}\]
- \[Ba{{(OH)}_{2}}\] : Barium hydroxide solution is a strong base. It completely dissociates in water into $B{{a}^{2+}}$ and \[O{{H}^{-}}\] ions. Hence, it is a Bronsted-Lowry base.
\[Ba{{(OH)}_{2}}\to B{{a}^{2+}}+2O{{H}^{-}}\]
The proton donor acids are sulphuric acid ($S{{O}_{2}}{{(OH)}_{2}}$) and silicic acid ($Si{{(OH)}_{4}}$).
Therefore, the number of proton donor acids is two.
Note:
Note that \[B{{(OH)}_{3}}\] is also an acid but it is a Lewis acid. It is electron deficient in nature as boron has only six electrons in its outermost shell. Therefore, when dissolved in water, it accepts a pair of electrons from water in the form of \[O{{H}^{-}}\] ion.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers