Answer
Verified
468.9k+ views
Hint: General binomial expansion of \[{{(a+b)}^{n}}={}^{n}{{c}_{r}}{{(a)}^{n-r}}{{(b)}^{r}}\] where
\[{}^{n}{{c}_{r}}=\dfrac{n!}{(n)!(n-r)!}\]
Here \[{}^{n}{{c}_{r}}\] term is always a rational number, so we want the terms \[{{(a)}^{n-
r}}and{{(b)}^{r}}\] to be rational.
Complete step-by-step answer:
For making these terms rational, we have to make \[n-r\] and \[r\] as an integer, because non
integer power to an integer number can never be an integer.
So basically, we want to make the powers of a and b as integers.
We are given a binomial expression as \[{{({{9}^{\dfrac{1}{4}}}+{{8}^{ \dfrac{1}{6}}})}^{1000}}\]
Using formula \[{{(a+b)}^{n}}={}^{n}{{c}_{r}}{{(a)}^{n-r}}{{(b)}^{r}}\], here r varies from 0 to n
Expanding,
\[{{({{9}^{\dfrac{1}{4}}}+{{8}^{\dfrac{1}{6}}})}^{1000}}={}^{1000}{{c}_{r}}{{({{9}^{\dfrac{1}{4}}})}^{1000
-r}}{{({{8}^{\dfrac{1}{6}}})}^{r}}\], similarly r varies from 0 to 1000
now as we know that \[9={{3}^{2}}\] and \[8={{2}^{3}}\] so we can replace their value in above
equation\[\] \[\]
we can write \[{{9}^{\dfrac{1}{4}}}={{({{3}^{2}})}^{\dfrac{1}{4}}}\] and \[{{8}^{
\dfrac{1}{6}}}={{({{2}^{3}})}^{\dfrac{1}{6}}}\]
Using property \[{{({{x}^{a}})}^{b}}={{x}^{ab}}\]
We can write \[{{9}^{\dfrac{1}{4}}}=({{3}^{\dfrac{2}{4}}})={{3}^{\dfrac{1}{2}}}...(2)\] and \[{{8}^{
\dfrac{1}{6}}}=({{2}^{\dfrac{3}{6}}})={{2}^{\dfrac{1}{2}}}.....(3)\]
Substituting equation (2) and (3) in equation (1)
\[{{({{9}^{\dfrac{1}{4}}}+{{8}^{
\dfrac{1}{6}}})}^{1000}}={}^{1000}{{c}_{r}}{{({{3}^{\dfrac{1}{2}}})}^{1000-
r}}{{({{2}^{\dfrac{1}{2}}})}^{r}}\]
Again, using property \[{{({{x}^{a}})}^{b}}={{x}^{ab}}\]
We can write it as \[{{({{9}^{\dfrac{1}{4}}}+{{8}^{
\dfrac{1}{6}}})}^{1000}}={}^{1000}{{c}_{r}}({{3}^{\dfrac{1000-r}{2}}})({{2}^{\dfrac{r}{2}}})\]
\[\begin{align}
\to {}^{1000}{{c}_{r}}({{3}^{500-\dfrac{r}{2}}})({{2}^{\dfrac{r}{2}}}) \\
\\
\end{align}\]
Now as we know that \[{}^{1000}{{c}_{r}}\] is integer so we just want powers of 2 and 3 to be
integer to give rational term, and looking carefully we just want \[\dfrac{r}{2}\] to be integer ,
because \[500-\dfrac{r}{2}\] will also become integer if \[\dfrac{r}{2}\] is integer.
Now what if we take \[\dfrac{r}{2}\] as non integer for ex r=3 , then we can see that it becomes
\[{{2}^{\dfrac{3}{2}}}\] so it’s clearly not an rational number
We just want \[\dfrac{r}{2}\] to be integer and our r varies from 0 to 1000
So \[\dfrac{r}{2}\] will be integer whenever r will be multiple of 2
Values of r = 0,2,4….1000
Which is equals to \[\dfrac{1000}{2}+1=501\]
Hence 501 terms are rational.
Note: You can do some mistake while expanding the binomial expression or In using the property
\[{{({{x}^{a}})}^{b}}={{x}^{ab}}\] correctly, Convince yourself that power of a integer number must be
an integer to give a rational number , if you have a doubt cross check it by putting any non-
integer number in power of any integer number for ex-
\[{{2}^{\dfrac{1}{3}}}\] or \[{{3}^{\dfrac{3}{8}}}\] they can’t be a rational number.
\[{}^{n}{{c}_{r}}=\dfrac{n!}{(n)!(n-r)!}\]
Here \[{}^{n}{{c}_{r}}\] term is always a rational number, so we want the terms \[{{(a)}^{n-
r}}and{{(b)}^{r}}\] to be rational.
Complete step-by-step answer:
For making these terms rational, we have to make \[n-r\] and \[r\] as an integer, because non
integer power to an integer number can never be an integer.
So basically, we want to make the powers of a and b as integers.
We are given a binomial expression as \[{{({{9}^{\dfrac{1}{4}}}+{{8}^{ \dfrac{1}{6}}})}^{1000}}\]
Using formula \[{{(a+b)}^{n}}={}^{n}{{c}_{r}}{{(a)}^{n-r}}{{(b)}^{r}}\], here r varies from 0 to n
Expanding,
\[{{({{9}^{\dfrac{1}{4}}}+{{8}^{\dfrac{1}{6}}})}^{1000}}={}^{1000}{{c}_{r}}{{({{9}^{\dfrac{1}{4}}})}^{1000
-r}}{{({{8}^{\dfrac{1}{6}}})}^{r}}\], similarly r varies from 0 to 1000
now as we know that \[9={{3}^{2}}\] and \[8={{2}^{3}}\] so we can replace their value in above
equation\[\] \[\]
we can write \[{{9}^{\dfrac{1}{4}}}={{({{3}^{2}})}^{\dfrac{1}{4}}}\] and \[{{8}^{
\dfrac{1}{6}}}={{({{2}^{3}})}^{\dfrac{1}{6}}}\]
Using property \[{{({{x}^{a}})}^{b}}={{x}^{ab}}\]
We can write \[{{9}^{\dfrac{1}{4}}}=({{3}^{\dfrac{2}{4}}})={{3}^{\dfrac{1}{2}}}...(2)\] and \[{{8}^{
\dfrac{1}{6}}}=({{2}^{\dfrac{3}{6}}})={{2}^{\dfrac{1}{2}}}.....(3)\]
Substituting equation (2) and (3) in equation (1)
\[{{({{9}^{\dfrac{1}{4}}}+{{8}^{
\dfrac{1}{6}}})}^{1000}}={}^{1000}{{c}_{r}}{{({{3}^{\dfrac{1}{2}}})}^{1000-
r}}{{({{2}^{\dfrac{1}{2}}})}^{r}}\]
Again, using property \[{{({{x}^{a}})}^{b}}={{x}^{ab}}\]
We can write it as \[{{({{9}^{\dfrac{1}{4}}}+{{8}^{
\dfrac{1}{6}}})}^{1000}}={}^{1000}{{c}_{r}}({{3}^{\dfrac{1000-r}{2}}})({{2}^{\dfrac{r}{2}}})\]
\[\begin{align}
\to {}^{1000}{{c}_{r}}({{3}^{500-\dfrac{r}{2}}})({{2}^{\dfrac{r}{2}}}) \\
\\
\end{align}\]
Now as we know that \[{}^{1000}{{c}_{r}}\] is integer so we just want powers of 2 and 3 to be
integer to give rational term, and looking carefully we just want \[\dfrac{r}{2}\] to be integer ,
because \[500-\dfrac{r}{2}\] will also become integer if \[\dfrac{r}{2}\] is integer.
Now what if we take \[\dfrac{r}{2}\] as non integer for ex r=3 , then we can see that it becomes
\[{{2}^{\dfrac{3}{2}}}\] so it’s clearly not an rational number
We just want \[\dfrac{r}{2}\] to be integer and our r varies from 0 to 1000
So \[\dfrac{r}{2}\] will be integer whenever r will be multiple of 2
Values of r = 0,2,4….1000
Which is equals to \[\dfrac{1000}{2}+1=501\]
Hence 501 terms are rational.
Note: You can do some mistake while expanding the binomial expression or In using the property
\[{{({{x}^{a}})}^{b}}={{x}^{ab}}\] correctly, Convince yourself that power of a integer number must be
an integer to give a rational number , if you have a doubt cross check it by putting any non-
integer number in power of any integer number for ex-
\[{{2}^{\dfrac{1}{3}}}\] or \[{{3}^{\dfrac{3}{8}}}\] they can’t be a rational number.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE