Answer
Verified
407.4k+ views
Hint- The Number of diagonals are given here .So, we use the formula of finding the Number of diagonals of a polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
As we know that the number of diagonals of polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
Now it is given that polygons have 35 diagonals.
$\therefore 35 = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\begin{gathered}
\Rightarrow {n^2} - 3n = 70 \\
\Rightarrow {n^2} - 3n - 70 = 0 \\
\end{gathered} $
Now factorize the equation we have
$\begin{gathered}
\Rightarrow {n^2} - 10n + 7n - 70 = 0 \\
\Rightarrow n\left( {n - 10} \right) + 7\left( {n - 10} \right) = 0 \\
\Rightarrow \left( {n - 10} \right)\left( {n + 7} \right) = 0 \\
\Rightarrow \left( {n - 10} \right) = 0{\text{ \& }}\left( {n + 7} \right) = 0 \\
\therefore n = 10,{\text{ - 7}} \\
\end{gathered} $
But the number of sides of a polygon cannot be negative.
So, the number of sides of a polygon having 35 diagonals is 10.
Note- In such types of questions the key concept we have to remember is that always recall the formula of number of diagonals of a polygon having n sides, then according to given condition substitute the value and simplify, we will get the required number of sides having 35 dia
As we know that the number of diagonals of polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
Now it is given that polygons have 35 diagonals.
$\therefore 35 = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\begin{gathered}
\Rightarrow {n^2} - 3n = 70 \\
\Rightarrow {n^2} - 3n - 70 = 0 \\
\end{gathered} $
Now factorize the equation we have
$\begin{gathered}
\Rightarrow {n^2} - 10n + 7n - 70 = 0 \\
\Rightarrow n\left( {n - 10} \right) + 7\left( {n - 10} \right) = 0 \\
\Rightarrow \left( {n - 10} \right)\left( {n + 7} \right) = 0 \\
\Rightarrow \left( {n - 10} \right) = 0{\text{ \& }}\left( {n + 7} \right) = 0 \\
\therefore n = 10,{\text{ - 7}} \\
\end{gathered} $
But the number of sides of a polygon cannot be negative.
So, the number of sides of a polygon having 35 diagonals is 10.
Note- In such types of questions the key concept we have to remember is that always recall the formula of number of diagonals of a polygon having n sides, then according to given condition substitute the value and simplify, we will get the required number of sides having 35 dia
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE