
Find the number of sides of a polygon having 35 diagonals.
Answer
531.6k+ views
Hint- The Number of diagonals are given here .So, we use the formula of finding the Number of diagonals of a polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
As we know that the number of diagonals of polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
Now it is given that polygons have 35 diagonals.
$\therefore 35 = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\begin{gathered}
\Rightarrow {n^2} - 3n = 70 \\
\Rightarrow {n^2} - 3n - 70 = 0 \\
\end{gathered} $
Now factorize the equation we have
$\begin{gathered}
\Rightarrow {n^2} - 10n + 7n - 70 = 0 \\
\Rightarrow n\left( {n - 10} \right) + 7\left( {n - 10} \right) = 0 \\
\Rightarrow \left( {n - 10} \right)\left( {n + 7} \right) = 0 \\
\Rightarrow \left( {n - 10} \right) = 0{\text{ \& }}\left( {n + 7} \right) = 0 \\
\therefore n = 10,{\text{ - 7}} \\
\end{gathered} $
But the number of sides of a polygon cannot be negative.
So, the number of sides of a polygon having 35 diagonals is 10.
Note- In such types of questions the key concept we have to remember is that always recall the formula of number of diagonals of a polygon having n sides, then according to given condition substitute the value and simplify, we will get the required number of sides having 35 dia
As we know that the number of diagonals of polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
Now it is given that polygons have 35 diagonals.
$\therefore 35 = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\begin{gathered}
\Rightarrow {n^2} - 3n = 70 \\
\Rightarrow {n^2} - 3n - 70 = 0 \\
\end{gathered} $
Now factorize the equation we have
$\begin{gathered}
\Rightarrow {n^2} - 10n + 7n - 70 = 0 \\
\Rightarrow n\left( {n - 10} \right) + 7\left( {n - 10} \right) = 0 \\
\Rightarrow \left( {n - 10} \right)\left( {n + 7} \right) = 0 \\
\Rightarrow \left( {n - 10} \right) = 0{\text{ \& }}\left( {n + 7} \right) = 0 \\
\therefore n = 10,{\text{ - 7}} \\
\end{gathered} $
But the number of sides of a polygon cannot be negative.
So, the number of sides of a polygon having 35 diagonals is 10.
Note- In such types of questions the key concept we have to remember is that always recall the formula of number of diagonals of a polygon having n sides, then according to given condition substitute the value and simplify, we will get the required number of sides having 35 dia
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Full form of STD, ISD and PCO

What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE

Compare the manure and fertilizer in maintaining the class 8 biology CBSE

