
Find the number of solutions of the equation $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$.
A) $2$
B) $1$
C) $0$
D) $3$
Answer
483.3k+ views
Hint: The given equation is a second-degree equation in ${\sin ^{ - 1}}x$. To find what all values $x$ can take (and thus the number of solutions), first we need to check what all values ${\sin ^{ - 1}}x$ can take. This can be done by solving the quadratic equation by taking ${\sin ^{ - 1}}x = y$(say). Then we can eliminate any values which does not belong to the range of ${\sin ^{ - 1}}x$.
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE
