Answer
Verified
460.5k+ views
Hint: The given equation is a second-degree equation in ${\sin ^{ - 1}}x$. To find what all values $x$ can take (and thus the number of solutions), first we need to check what all values ${\sin ^{ - 1}}x$ can take. This can be done by solving the quadratic equation by taking ${\sin ^{ - 1}}x = y$(say). Then we can eliminate any values which does not belong to the range of ${\sin ^{ - 1}}x$.
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE