Answer
Verified
394.2k+ views
Hint: Here, in the given question, we have been asked to find the number of ways in which \[5\] boys and \[3\] girls can be seated in a row so that each girl is in between two boys. First we will find the number of ways that boys can be seated. After that, we will observe that there will be four places where girls can be seated. We will arrange them in the possible places to get the desired result.
Complete step-by-step answer:
Given: There are \[5\] boys and \[3\] girls
At first, we will arrange the \[5\] boys in a row which can be done in \[{}^5{P_5}\] ways,
Therefore, the boys can be arranged in \[5!\] = \[120\] ways.
Arrangement is done in the following way, where on each empty place, a girl can be seated.
\[B \ldots B \ldots B \ldots B \ldots B\]
Clearly, there are \[4\] places where girls can be seated. And there are only \[3\] girls.
So, the number of ways that \[3\] girls can be arranged at \[4\] places are \[{}^4{P_3}\] ways = \[\dfrac{{4!}}{{1!}}\] ways
= \[4 \times 3 \times 2\] ways
= \[24\] ways.
It means, for each arrangement of boys, there are \[24\] ways of arranging girls.
Therefore, for \[120\] arrangement of boys, total number of ways of arranging girls = \[120 \times 24\] ways
= \[2880\] ways.
So, the correct answer is “Option A”.
Note: The number of permutations of \[n\] different things, taken \[r\] at a time, where repetition is not allowed, is denoted by \[{}^n{P_r}\] and is calculated by \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] , where \[0 \leqslant r \leqslant n\] .
Additional information: The notation \[n!\] represents the product of first \[n\] natural numbers. Therefore, the product \[1 \times 2 \times 3 \times \ldots \times \left( {n - 1} \right) \times n\] is denoted as \[n!\] . And \[0!\] is defined as \[1\] .
Complete step-by-step answer:
Given: There are \[5\] boys and \[3\] girls
At first, we will arrange the \[5\] boys in a row which can be done in \[{}^5{P_5}\] ways,
Therefore, the boys can be arranged in \[5!\] = \[120\] ways.
Arrangement is done in the following way, where on each empty place, a girl can be seated.
\[B \ldots B \ldots B \ldots B \ldots B\]
Clearly, there are \[4\] places where girls can be seated. And there are only \[3\] girls.
So, the number of ways that \[3\] girls can be arranged at \[4\] places are \[{}^4{P_3}\] ways = \[\dfrac{{4!}}{{1!}}\] ways
= \[4 \times 3 \times 2\] ways
= \[24\] ways.
It means, for each arrangement of boys, there are \[24\] ways of arranging girls.
Therefore, for \[120\] arrangement of boys, total number of ways of arranging girls = \[120 \times 24\] ways
= \[2880\] ways.
So, the correct answer is “Option A”.
Note: The number of permutations of \[n\] different things, taken \[r\] at a time, where repetition is not allowed, is denoted by \[{}^n{P_r}\] and is calculated by \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] , where \[0 \leqslant r \leqslant n\] .
Additional information: The notation \[n!\] represents the product of first \[n\] natural numbers. Therefore, the product \[1 \times 2 \times 3 \times \ldots \times \left( {n - 1} \right) \times n\] is denoted as \[n!\] . And \[0!\] is defined as \[1\] .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE