Answer
Verified
495.3k+ views
Hint: There are only two types. of such representation where no two girls and no two boys are together. Permutation of girls and boys in seating arrangements will lead to the result.
Complete step-by-step answer:
We have to make an arrangement where no two boys or girls will sit together. Notice that if the row starts with a boy then the next one must be a girl for that case. Again, the next one a boy and after that a girl and so on. So, boy and girl will be seated alternatively. Similarly, if the row starts with a girl then the next one must be a boy for that case. Again, the next one a girl and after that a boy and so on.
Now there are a total of 5 boys and 5 girls.
Let we have placed 5 boys in a particular order where row starts with a boy with a gap between them. Therefore, the girls will fill the gaps. Now as there are 5 girls, the number of ways by which the gaps of a particular arrangement can be filled by 5 girls is simply 5!.
Now for each such arrangement, as there are 5 boys, they too can rearrange between themselves by 5! Ways. So, the total number of ways is \[5!\times 5!={{\left( 5! \right)}^{2}}\].
Similarly if the row starts with a girl it will also result in \[5!\times 5!={{\left( 5! \right)}^{2}}\]
So the total number of ways so that no two girls and no two boys are together is \[2\cdot {{\left( 5! \right)}^{2}}\].
Note: As every boy or girl is a distinct element, we use this process. If all boys or girls are the same then there would only be two types of ways to represent.
Complete step-by-step answer:
We have to make an arrangement where no two boys or girls will sit together. Notice that if the row starts with a boy then the next one must be a girl for that case. Again, the next one a boy and after that a girl and so on. So, boy and girl will be seated alternatively. Similarly, if the row starts with a girl then the next one must be a boy for that case. Again, the next one a girl and after that a boy and so on.
Now there are a total of 5 boys and 5 girls.
Let we have placed 5 boys in a particular order where row starts with a boy with a gap between them. Therefore, the girls will fill the gaps. Now as there are 5 girls, the number of ways by which the gaps of a particular arrangement can be filled by 5 girls is simply 5!.
Now for each such arrangement, as there are 5 boys, they too can rearrange between themselves by 5! Ways. So, the total number of ways is \[5!\times 5!={{\left( 5! \right)}^{2}}\].
Similarly if the row starts with a girl it will also result in \[5!\times 5!={{\left( 5! \right)}^{2}}\]
So the total number of ways so that no two girls and no two boys are together is \[2\cdot {{\left( 5! \right)}^{2}}\].
Note: As every boy or girl is a distinct element, we use this process. If all boys or girls are the same then there would only be two types of ways to represent.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE