Answer
Verified
472.5k+ views
Hint: In this problem we need to find the number of $3$ letter words, each containing one vowel at least. For this, first, we will find a number of words each containing exactly one vowel. Then, we will find a number of words each containing exactly two vowels. In this problem, we have only two vowels $a$ and $e$. We will add the number of words containing exactly one vowel and the number of words containing exactly two vowels to get the total number of three-letter words. We will use the concept of combination and permutation in this problem.
Complete step by step answer:
We have two vowels $a,e$ and four consonants $b,c,d,f$. To find the number of three-letter words each containing one vowel at least, we will consider the following cases:
The case I: Exactly one vowel and two consonants.
In this case, one vowel out of two vowels can be selected in ${}^2{C_1} = 2$ ways. Two consonants out of four consonants can be selected in ${}^4{C_2} = \dfrac{{4 \times 3}}{{1 \times 2}} = \dfrac{{12}}{2} = 6$ ways.
All three letters (one vowel and two consonants) can arrange among themselves in $3! = 6$ ways. Therefore, the total number of three-letter words each containing exactly one vowel are $2 \times 6 \times 6 = 72$.
Case II: Exactly two vowels and one consonant.
Two vowels out of two vowels can be selected in ${}^2{C_2} = \dfrac{{2 \times 1}}{{1 \times 2}} = 1$ way. One consonant out of four consonants can be selected in ${}^4{C_1} = 4$ ways.
All three letters (one vowel and two consonants) can arrange among themselves in $3! = 6$ ways. Therefore, the total number of three-letter words each containing exactly two vowels is $1 \times 4 \times 6 = 24$. Now we will add the possibilities of the case I and case II to get the required number of words. Therefore, the total number of three-letter words each containing at least one vowel is $72 + 24 = 96$.
Note:
If we consider the order of objects then it is a permutation. If we do not consider the order of objects then it is a combination. ${}^n{C_r}$ gives the total number of ways of selecting $r$ objects out of $n$ objects. ${}^n{P_r}$ gives the total number of distinct arrangements when we arrange $r$ objects among $n$ objects. The number of permutations of $n$ distinct objects is $n!$.
Complete step by step answer:
We have two vowels $a,e$ and four consonants $b,c,d,f$. To find the number of three-letter words each containing one vowel at least, we will consider the following cases:
The case I: Exactly one vowel and two consonants.
In this case, one vowel out of two vowels can be selected in ${}^2{C_1} = 2$ ways. Two consonants out of four consonants can be selected in ${}^4{C_2} = \dfrac{{4 \times 3}}{{1 \times 2}} = \dfrac{{12}}{2} = 6$ ways.
All three letters (one vowel and two consonants) can arrange among themselves in $3! = 6$ ways. Therefore, the total number of three-letter words each containing exactly one vowel are $2 \times 6 \times 6 = 72$.
Case II: Exactly two vowels and one consonant.
Two vowels out of two vowels can be selected in ${}^2{C_2} = \dfrac{{2 \times 1}}{{1 \times 2}} = 1$ way. One consonant out of four consonants can be selected in ${}^4{C_1} = 4$ ways.
All three letters (one vowel and two consonants) can arrange among themselves in $3! = 6$ ways. Therefore, the total number of three-letter words each containing exactly two vowels is $1 \times 4 \times 6 = 24$. Now we will add the possibilities of the case I and case II to get the required number of words. Therefore, the total number of three-letter words each containing at least one vowel is $72 + 24 = 96$.
Note:
If we consider the order of objects then it is a permutation. If we do not consider the order of objects then it is a combination. ${}^n{C_r}$ gives the total number of ways of selecting $r$ objects out of $n$ objects. ${}^n{P_r}$ gives the total number of distinct arrangements when we arrange $r$ objects among $n$ objects. The number of permutations of $n$ distinct objects is $n!$.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE