Answer
Verified
449.4k+ views
Hint: First, we have to find out the equation of altitudes as orthocenters are basically the intersection point of the three altitudes of the triangle. Since the equation of sides is given, we can find the equation of altitudes by finding the slope of the sides, and with the help of these equations of altitudes, we find the orthocenter by solving those equations.
Complete step by step answer:
In \[\Delta ABC\], find the slope of lines using \[y = mx + c\] where \[m\] is the slope of a line
Let\[x + y = 6\]be the side AB whose slope is \[ - 1\]
$\Rightarrow$ \[2x + y = 4\], be the side BC with slope \[ - 2\]
$\Rightarrow$ \[x + 2y = 5\], be the side CA with slope \[ - \dfrac{1}{2}\]
Then find the coordinates of vertices by solving the pair of side equations:
For Vertices A, solve line equation AB and CA by substitution method, we get A as:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow x + 2y = 5 \\
\Rightarrow 6 - y + 2y = 5 \\
\Rightarrow y = - 1 \\
\Rightarrow x = 6 - ( - 1) = 7 \\
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\]
For Vertices B, solve equation AB and BC by substitution method, we get:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(6 - y) + y = 4 \\
\Rightarrow 12 - 2y + y = 4 \\
\Rightarrow y = 12 - 4 = 8 \\
\Rightarrow x = 6 - y = 6 - 8 = - 2 \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\]
For Vertices C, solve equation BC and CA by substitution method, we get:
\[
\Rightarrow x + 2y = 5{\text{ or, }}x = 5 - 2y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(5 - 2y) + y = 4 \\
\Rightarrow 10 - 4y + y = 4 \\
\Rightarrow 3y = 6 \\
\Rightarrow y = 2 \\
\Rightarrow x = 5 - 2y = 5 - 2(2) = 1 \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
So, we have all the vertices of the triangle as:
\[
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
Now, find the altitude AD, BE, CF of the \[\Delta ABC\] by using the slope and equation of opposite vertex.
So, the equation for AD will be given as:
\[
\Rightarrow \dfrac{{y - {A_y}}}{{x - {A_x}}} = \dfrac{{ - 1}}{{slope\left( {BC} \right)}} \\
\Rightarrow \dfrac{{y + 1}}{{x - 7}} = \dfrac{1}{2} \\
\Rightarrow x - 7 = 2(y + 1) \\
\Rightarrow x - 7 = 2y + 2 \\
\Rightarrow x - 2y - 9 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow \[x - 2y - 9 = 0\]-- (i)
Again, the equation for BE will be
\[
\Rightarrow \dfrac{{y - {B_y}}}{{x - {B_x}}} = \dfrac{{ - 1}}{{slope\left( {CA} \right)}} \\
\Rightarrow \dfrac{{y - 8}}{{x + 2}} = 2 \\
\Rightarrow 2(x + 2) = y - 8 \\
\Rightarrow 2x + 4 = y - 8 \\
\Rightarrow 2x - y = - 12 \\
\Rightarrow 2x - y + 12 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow\[2x - y + 12 = 0\]-- (ii)
Similarly, the equation for CF will be
\[
\Rightarrow \dfrac{{y - {C_y}}}{{x - {C_x}}} = \dfrac{{ - 1}}{{slope\left( {AB} \right)}} \\
\Rightarrow \dfrac{{y - 2}}{{x - 1}} = 1 \\
\]
By cross multiplying the terms, we get:
\[
\Rightarrow x - 1 = y - 2 \\
\Rightarrow x - y + 1 = 0 \\
\Rightarrow x = y - 1 - - - (iii) \\
\]
Then find the orthocenter we can find by solving any two equations of the altitude (i), (ii), (iii):
Substitute $x = y - 1$ in the equation \[x - 2y + 9 = 0\] to determine the value of the variables $\left( {x,y} \right)$.
$
\Rightarrow x - 2y - 9 = 0 \\
\Rightarrow y - 1 - 2y - 9 = 0 \\
\Rightarrow - y - 10 = 0 \\
\Rightarrow y = - 10 \\
$
Again, substitute $y = - 10$ in the equation $x = y - 1$ to determine the value of $y$.
$
\Rightarrow x = y - 1 \\
\Rightarrow x = - 10 - 1 \\
\Rightarrow x = - 11 \\
$
Hence, we get \[H\left( { - 11, - 10} \right)\] as an orthocenter.
Note: Orthocenters are always the intersection point of altitudes so first find the equation of altitudes. Altitudes are the perpendicular line segment drawn from any one of the vertices of the triangle to any one of the sides of the triangle.
Complete step by step answer:
In \[\Delta ABC\], find the slope of lines using \[y = mx + c\] where \[m\] is the slope of a line
Let\[x + y = 6\]be the side AB whose slope is \[ - 1\]
$\Rightarrow$ \[2x + y = 4\], be the side BC with slope \[ - 2\]
$\Rightarrow$ \[x + 2y = 5\], be the side CA with slope \[ - \dfrac{1}{2}\]
Then find the coordinates of vertices by solving the pair of side equations:
For Vertices A, solve line equation AB and CA by substitution method, we get A as:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow x + 2y = 5 \\
\Rightarrow 6 - y + 2y = 5 \\
\Rightarrow y = - 1 \\
\Rightarrow x = 6 - ( - 1) = 7 \\
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\]
For Vertices B, solve equation AB and BC by substitution method, we get:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(6 - y) + y = 4 \\
\Rightarrow 12 - 2y + y = 4 \\
\Rightarrow y = 12 - 4 = 8 \\
\Rightarrow x = 6 - y = 6 - 8 = - 2 \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\]
For Vertices C, solve equation BC and CA by substitution method, we get:
\[
\Rightarrow x + 2y = 5{\text{ or, }}x = 5 - 2y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(5 - 2y) + y = 4 \\
\Rightarrow 10 - 4y + y = 4 \\
\Rightarrow 3y = 6 \\
\Rightarrow y = 2 \\
\Rightarrow x = 5 - 2y = 5 - 2(2) = 1 \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
So, we have all the vertices of the triangle as:
\[
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
Now, find the altitude AD, BE, CF of the \[\Delta ABC\] by using the slope and equation of opposite vertex.
So, the equation for AD will be given as:
\[
\Rightarrow \dfrac{{y - {A_y}}}{{x - {A_x}}} = \dfrac{{ - 1}}{{slope\left( {BC} \right)}} \\
\Rightarrow \dfrac{{y + 1}}{{x - 7}} = \dfrac{1}{2} \\
\Rightarrow x - 7 = 2(y + 1) \\
\Rightarrow x - 7 = 2y + 2 \\
\Rightarrow x - 2y - 9 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow \[x - 2y - 9 = 0\]-- (i)
Again, the equation for BE will be
\[
\Rightarrow \dfrac{{y - {B_y}}}{{x - {B_x}}} = \dfrac{{ - 1}}{{slope\left( {CA} \right)}} \\
\Rightarrow \dfrac{{y - 8}}{{x + 2}} = 2 \\
\Rightarrow 2(x + 2) = y - 8 \\
\Rightarrow 2x + 4 = y - 8 \\
\Rightarrow 2x - y = - 12 \\
\Rightarrow 2x - y + 12 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow\[2x - y + 12 = 0\]-- (ii)
Similarly, the equation for CF will be
\[
\Rightarrow \dfrac{{y - {C_y}}}{{x - {C_x}}} = \dfrac{{ - 1}}{{slope\left( {AB} \right)}} \\
\Rightarrow \dfrac{{y - 2}}{{x - 1}} = 1 \\
\]
By cross multiplying the terms, we get:
\[
\Rightarrow x - 1 = y - 2 \\
\Rightarrow x - y + 1 = 0 \\
\Rightarrow x = y - 1 - - - (iii) \\
\]
Then find the orthocenter we can find by solving any two equations of the altitude (i), (ii), (iii):
Substitute $x = y - 1$ in the equation \[x - 2y + 9 = 0\] to determine the value of the variables $\left( {x,y} \right)$.
$
\Rightarrow x - 2y - 9 = 0 \\
\Rightarrow y - 1 - 2y - 9 = 0 \\
\Rightarrow - y - 10 = 0 \\
\Rightarrow y = - 10 \\
$
Again, substitute $y = - 10$ in the equation $x = y - 1$ to determine the value of $y$.
$
\Rightarrow x = y - 1 \\
\Rightarrow x = - 10 - 1 \\
\Rightarrow x = - 11 \\
$
Hence, we get \[H\left( { - 11, - 10} \right)\] as an orthocenter.
Note: Orthocenters are always the intersection point of altitudes so first find the equation of altitudes. Altitudes are the perpendicular line segment drawn from any one of the vertices of the triangle to any one of the sides of the triangle.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE