Answer
Verified
467.4k+ views
Hint: First, we have to find out the equation of altitudes as orthocenters are basically the intersection point of the three altitudes of the triangle. Since the equation of sides is given, we can find the equation of altitudes by finding the slope of the sides, and with the help of these equations of altitudes, we find the orthocenter by solving those equations.
Complete step by step answer:
In \[\Delta ABC\], find the slope of lines using \[y = mx + c\] where \[m\] is the slope of a line
Let\[x + y = 6\]be the side AB whose slope is \[ - 1\]
$\Rightarrow$ \[2x + y = 4\], be the side BC with slope \[ - 2\]
$\Rightarrow$ \[x + 2y = 5\], be the side CA with slope \[ - \dfrac{1}{2}\]
Then find the coordinates of vertices by solving the pair of side equations:
For Vertices A, solve line equation AB and CA by substitution method, we get A as:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow x + 2y = 5 \\
\Rightarrow 6 - y + 2y = 5 \\
\Rightarrow y = - 1 \\
\Rightarrow x = 6 - ( - 1) = 7 \\
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\]
For Vertices B, solve equation AB and BC by substitution method, we get:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(6 - y) + y = 4 \\
\Rightarrow 12 - 2y + y = 4 \\
\Rightarrow y = 12 - 4 = 8 \\
\Rightarrow x = 6 - y = 6 - 8 = - 2 \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\]
For Vertices C, solve equation BC and CA by substitution method, we get:
\[
\Rightarrow x + 2y = 5{\text{ or, }}x = 5 - 2y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(5 - 2y) + y = 4 \\
\Rightarrow 10 - 4y + y = 4 \\
\Rightarrow 3y = 6 \\
\Rightarrow y = 2 \\
\Rightarrow x = 5 - 2y = 5 - 2(2) = 1 \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
So, we have all the vertices of the triangle as:
\[
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
Now, find the altitude AD, BE, CF of the \[\Delta ABC\] by using the slope and equation of opposite vertex.
So, the equation for AD will be given as:
\[
\Rightarrow \dfrac{{y - {A_y}}}{{x - {A_x}}} = \dfrac{{ - 1}}{{slope\left( {BC} \right)}} \\
\Rightarrow \dfrac{{y + 1}}{{x - 7}} = \dfrac{1}{2} \\
\Rightarrow x - 7 = 2(y + 1) \\
\Rightarrow x - 7 = 2y + 2 \\
\Rightarrow x - 2y - 9 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow \[x - 2y - 9 = 0\]-- (i)
Again, the equation for BE will be
\[
\Rightarrow \dfrac{{y - {B_y}}}{{x - {B_x}}} = \dfrac{{ - 1}}{{slope\left( {CA} \right)}} \\
\Rightarrow \dfrac{{y - 8}}{{x + 2}} = 2 \\
\Rightarrow 2(x + 2) = y - 8 \\
\Rightarrow 2x + 4 = y - 8 \\
\Rightarrow 2x - y = - 12 \\
\Rightarrow 2x - y + 12 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow\[2x - y + 12 = 0\]-- (ii)
Similarly, the equation for CF will be
\[
\Rightarrow \dfrac{{y - {C_y}}}{{x - {C_x}}} = \dfrac{{ - 1}}{{slope\left( {AB} \right)}} \\
\Rightarrow \dfrac{{y - 2}}{{x - 1}} = 1 \\
\]
By cross multiplying the terms, we get:
\[
\Rightarrow x - 1 = y - 2 \\
\Rightarrow x - y + 1 = 0 \\
\Rightarrow x = y - 1 - - - (iii) \\
\]
Then find the orthocenter we can find by solving any two equations of the altitude (i), (ii), (iii):
Substitute $x = y - 1$ in the equation \[x - 2y + 9 = 0\] to determine the value of the variables $\left( {x,y} \right)$.
$
\Rightarrow x - 2y - 9 = 0 \\
\Rightarrow y - 1 - 2y - 9 = 0 \\
\Rightarrow - y - 10 = 0 \\
\Rightarrow y = - 10 \\
$
Again, substitute $y = - 10$ in the equation $x = y - 1$ to determine the value of $y$.
$
\Rightarrow x = y - 1 \\
\Rightarrow x = - 10 - 1 \\
\Rightarrow x = - 11 \\
$
Hence, we get \[H\left( { - 11, - 10} \right)\] as an orthocenter.
Note: Orthocenters are always the intersection point of altitudes so first find the equation of altitudes. Altitudes are the perpendicular line segment drawn from any one of the vertices of the triangle to any one of the sides of the triangle.
Complete step by step answer:
In \[\Delta ABC\], find the slope of lines using \[y = mx + c\] where \[m\] is the slope of a line
Let\[x + y = 6\]be the side AB whose slope is \[ - 1\]
$\Rightarrow$ \[2x + y = 4\], be the side BC with slope \[ - 2\]
$\Rightarrow$ \[x + 2y = 5\], be the side CA with slope \[ - \dfrac{1}{2}\]
Then find the coordinates of vertices by solving the pair of side equations:
For Vertices A, solve line equation AB and CA by substitution method, we get A as:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow x + 2y = 5 \\
\Rightarrow 6 - y + 2y = 5 \\
\Rightarrow y = - 1 \\
\Rightarrow x = 6 - ( - 1) = 7 \\
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\]
For Vertices B, solve equation AB and BC by substitution method, we get:
\[
\Rightarrow x + y = 6{\text{ or, }}x = 6 - y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(6 - y) + y = 4 \\
\Rightarrow 12 - 2y + y = 4 \\
\Rightarrow y = 12 - 4 = 8 \\
\Rightarrow x = 6 - y = 6 - 8 = - 2 \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\]
For Vertices C, solve equation BC and CA by substitution method, we get:
\[
\Rightarrow x + 2y = 5{\text{ or, }}x = 5 - 2y \\
\Rightarrow 2x + y = 4{\text{ or, }}2(5 - 2y) + y = 4 \\
\Rightarrow 10 - 4y + y = 4 \\
\Rightarrow 3y = 6 \\
\Rightarrow y = 2 \\
\Rightarrow x = 5 - 2y = 5 - 2(2) = 1 \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
So, we have all the vertices of the triangle as:
\[
\Rightarrow \left( {{A_X},{A_Y}} \right) \equiv (7, - 1) \\
\Rightarrow \left( {{B_X},{B_Y}} \right) \equiv ( - 2,8) \\
\Rightarrow \left( {{C_X},{C_Y}} \right) \equiv (1,2) \\
\]
Now, find the altitude AD, BE, CF of the \[\Delta ABC\] by using the slope and equation of opposite vertex.
So, the equation for AD will be given as:
\[
\Rightarrow \dfrac{{y - {A_y}}}{{x - {A_x}}} = \dfrac{{ - 1}}{{slope\left( {BC} \right)}} \\
\Rightarrow \dfrac{{y + 1}}{{x - 7}} = \dfrac{1}{2} \\
\Rightarrow x - 7 = 2(y + 1) \\
\Rightarrow x - 7 = 2y + 2 \\
\Rightarrow x - 2y - 9 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow \[x - 2y - 9 = 0\]-- (i)
Again, the equation for BE will be
\[
\Rightarrow \dfrac{{y - {B_y}}}{{x - {B_x}}} = \dfrac{{ - 1}}{{slope\left( {CA} \right)}} \\
\Rightarrow \dfrac{{y - 8}}{{x + 2}} = 2 \\
\Rightarrow 2(x + 2) = y - 8 \\
\Rightarrow 2x + 4 = y - 8 \\
\Rightarrow 2x - y = - 12 \\
\Rightarrow 2x - y + 12 = 0 \\
\]
By cross multiplying the terms, we get:
\Rightarrow\[2x - y + 12 = 0\]-- (ii)
Similarly, the equation for CF will be
\[
\Rightarrow \dfrac{{y - {C_y}}}{{x - {C_x}}} = \dfrac{{ - 1}}{{slope\left( {AB} \right)}} \\
\Rightarrow \dfrac{{y - 2}}{{x - 1}} = 1 \\
\]
By cross multiplying the terms, we get:
\[
\Rightarrow x - 1 = y - 2 \\
\Rightarrow x - y + 1 = 0 \\
\Rightarrow x = y - 1 - - - (iii) \\
\]
Then find the orthocenter we can find by solving any two equations of the altitude (i), (ii), (iii):
Substitute $x = y - 1$ in the equation \[x - 2y + 9 = 0\] to determine the value of the variables $\left( {x,y} \right)$.
$
\Rightarrow x - 2y - 9 = 0 \\
\Rightarrow y - 1 - 2y - 9 = 0 \\
\Rightarrow - y - 10 = 0 \\
\Rightarrow y = - 10 \\
$
Again, substitute $y = - 10$ in the equation $x = y - 1$ to determine the value of $y$.
$
\Rightarrow x = y - 1 \\
\Rightarrow x = - 10 - 1 \\
\Rightarrow x = - 11 \\
$
Hence, we get \[H\left( { - 11, - 10} \right)\] as an orthocenter.
Note: Orthocenters are always the intersection point of altitudes so first find the equation of altitudes. Altitudes are the perpendicular line segment drawn from any one of the vertices of the triangle to any one of the sides of the triangle.
Recently Updated Pages
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE