Answer
Verified
498.3k+ views
Hint: Consider $\sec 2A$ and $\csc 3A$ as variables. This will transform the given expression into an equation in 2 variables. Since the product of $\left( \sec 2A-1 \right)$ and $\left( \csc 3A-1 \right)$ is 0, one of them should at least be 0. Use this fact to solve for A.
Complete step by step solution:
We have been given that the product of $\left( \sec 2A-1 \right)$ and $\left( \csc 3A-1 \right)$ is 0. We now assume that $x=\sec 2A$ and $y=\csc 3A$. Thus the expression can be reduced to an equation in x and y given as $\left( x-1 \right)\left( y-1 \right)=0$.
We know that the solution of any equation of the form $\left( x-a \right)\left( y-b \right)=0$ is given by
$x=a$ and $y=b$. Using the same rule in the above equation,
we get $x=1$ and $y=1$.
Thus, $\sec 2A=1$.
Now, we know that the value of $\sec \theta =1$ for $\theta ={{0}^{\circ }}$. Thus, using this in the above result, we get
$\begin{align}
& 2A={{0}^{\circ }} \\
& \Rightarrow A={{0}^{\circ }} \\
\end{align}$
This is the value of A that is already given to us. Thus, the required other value of A comes from the other result that we have, which is $y=1$.
Thus, $\csc 3A=1$
Now, we know that the value of $\csc \theta =1$ for $\theta =\dfrac{\pi }{2}$ or ${{90}^{\circ }}$. Thus, using this in the above result, we get
$\begin{align}
& 3A={{90}^{\circ }} \\
& \Rightarrow A={{30}^{\circ }} \\
\end{align}$
Thus, the required other value of A is given by $A={{30}^{\circ }}$ or $A=\dfrac{\pi }{6}$.
Note: The equations formed, $\sec 2A=1$ and $\csc 3A=1$, can have numerous solutions known as general values of A. But the fact, given to us that one value of A is ${{0}^{\circ }}$ indicates that we are essentially talking about the principal values of A, which are the values lying in between 0 and $\pi $. The question is to be solved keeping this in mind and hence, choosing only the principal value of A.
Complete step by step solution:
We have been given that the product of $\left( \sec 2A-1 \right)$ and $\left( \csc 3A-1 \right)$ is 0. We now assume that $x=\sec 2A$ and $y=\csc 3A$. Thus the expression can be reduced to an equation in x and y given as $\left( x-1 \right)\left( y-1 \right)=0$.
We know that the solution of any equation of the form $\left( x-a \right)\left( y-b \right)=0$ is given by
$x=a$ and $y=b$. Using the same rule in the above equation,
we get $x=1$ and $y=1$.
Thus, $\sec 2A=1$.
Now, we know that the value of $\sec \theta =1$ for $\theta ={{0}^{\circ }}$. Thus, using this in the above result, we get
$\begin{align}
& 2A={{0}^{\circ }} \\
& \Rightarrow A={{0}^{\circ }} \\
\end{align}$
This is the value of A that is already given to us. Thus, the required other value of A comes from the other result that we have, which is $y=1$.
Thus, $\csc 3A=1$
Now, we know that the value of $\csc \theta =1$ for $\theta =\dfrac{\pi }{2}$ or ${{90}^{\circ }}$. Thus, using this in the above result, we get
$\begin{align}
& 3A={{90}^{\circ }} \\
& \Rightarrow A={{30}^{\circ }} \\
\end{align}$
Thus, the required other value of A is given by $A={{30}^{\circ }}$ or $A=\dfrac{\pi }{6}$.
Note: The equations formed, $\sec 2A=1$ and $\csc 3A=1$, can have numerous solutions known as general values of A. But the fact, given to us that one value of A is ${{0}^{\circ }}$ indicates that we are essentially talking about the principal values of A, which are the values lying in between 0 and $\pi $. The question is to be solved keeping this in mind and hence, choosing only the principal value of A.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE